Name: _	Lab TA:							
Lab Day	Mon	Tue(am)	Tue(pm)	Wed	Thu(am)	Thur(pm)	Fri	
				Grade				
		>	95 >90	>85 >80	>70	<70		
		Report:						
		Prelaboratory	Quiz Score:					

Data Collection and Calculations:

		Reaction 1	Reaction 2
1.	<u>CaCl₂</u> Exact molarity of the CaCl ₂ solution:		
	Initial buret reading:		
	initial outer reading.		
	Final buret reading:		
	Volume of CaCl ₂ added:		
	Moles of CaCl ₂ added:		
	Moles of CaCO ₃ expected based on moles of CaCl ₂ added:		
2.	Na ₂ CO ₃ Exact molarity of the Na ₂ CO ₃ solution:		
	Initial buret reading:		
	Final buret reading:		
	Volume of Na ₂ CO ₃ added:		
	Moles of Na ₂ CO ₃ added:		
	Moles of CaCO ₃ expected based on moles of Na ₂ CO ₃ added:		
3.	Limiting Reagant Identify the Limiting Reagant (CaCl ₂ or Na ₂ CO ₃):		
	Mass of CaCO ₃ Expected:		
4.	CaCO ₃ Mass of Watch Glass:		
	Mass of Watch-Glass + CaCO ₃ 1st Heating:		
	Mass of Watch-Glass + CaCO ₃ 2 nd Heating:		
	Mass of CaCO ₃ produced:		
5.	Efficiency % Yield:		
	// 110101		L

1. Moles of CaCl ₂ added	1.	Moles of CaCO ₃ expected based on moles of CaCl ₂ added.					
3. Mass of CaCO ₃ Expected.	5.	% Yield					
Post Laboratory Question: Your TA	will not help y	ou with this final question.					
Diborane, B ₂ H ₆ , can be produced by the following re	eaction:						
$\underline{\hspace{0.5cm}} NaBH_4(aq) + \underline{\hspace{0.5cm}} H_2SO_4(aq) = \underline{\hspace{0.5cm}} H_2(g) + \underline{\hspace{0.5cm}} Na_2SO_4(aq) + \underline{\hspace{0.5cm}} B_2H_6(g)$							
What is the maximum quantity, in grams, of B_2H_6 the 1.55g of NaBH ₄ ?	at can be prep	pared starting with 250. mL of 0.0875M H ₂ SO ₄ and					