

Name: _____ Lab TA: _____

Mon	Tue(am)	Tue(pm)	Wed	Thu(am)	Thur(pm)	Fri
Lab Day						

Grade					
>95	>90	>85	>80	>70	<70

Report:

Prelaboratory Quiz Score:

Some Useful Information: $273.15 + ^\circ\text{C} = \text{temperature in K}$
 $760\text{mmHg} = 1 \text{ atm.}$

Vapor Pressure of Water:

"You are expected to plot a graph of $P \text{ v } T$ in order to determine the Vapor Pressure of water at the that you performed the experiment. Even in the unlikely event that that temperature is in fact listed!!"

T($^\circ\text{C}$)	P, (mm Hg)						
13.0	11.2	19.0	16.5	25.0	23.8	31.0	33.7
14.0	12.0	20.0	17.5	26.0	25.2	32.0	35.7
15.0	12.8	21.0	18.7	27.0	26.7	33.0	37.7
16.0	13.6	22.0	19.8	28.0	28.3	34.0	39.9
17.0	14.5	23.0	21.1	29.0	30.0	35.0	42.2
18.0	15.5	24.0	22.4	30.0	31.8	36.0	44.6

Data Collection and Calculations:

	Trial 1	Trial 2	Trial 3 (If necessary)
1. Barometric pressure (in Atmospheres):		
2. Temperature (in Kelvin):		
3. Mass of aluminum:		
Moles of Al:		
4.	Initial buret reading:	
	Final buret reading:	
Volume of H_2 :		
5. Moles of H_2 based on moles of Al:		
H_2 Pressure:		
6. Ideal Gas Constant:		
Average value:		

For Trial 1: show calculational method for:

5. Moles of H ₂ based on moles of Al.	6. The Ideal Gas Constant
--	---------------------------

Post Laboratory Question:

Your TA will not help you with this final question.

The decomposition of sodium azide (NaN₃) solid to sodium liquid and nitrogen gas is used in air bags. What volume of nitrogen gas measured at 725 mm of Hg and 26°C is produced when 75.0g of sodium azide (molar mass = 65.01g/mol) decomposes.

Na: 22.99 g.mol⁻¹

N: 14.01 g.mol⁻¹