Chem	1	1	2
CHEIII	_	_	_

Spring 2020

Quiz 4

First

Whelan

SID

Last

Question 1 2 Points

The reaction between ammonia and nitrous oxide is given below:

 $2 NH_3(q) + 3 N_2O(q) \longrightarrow 4 N_2(q) + 3 H_2O(q)$

We therefore know that which of the following reactions can also occur?

- □ $4 \text{ NH}_3(g) + 6 \text{ NO}(g) \longrightarrow 8 \text{ N}_2(g) + 6 \text{ H}_2O(l)$
- \Box 4 N₂(q) + 3 H₂O(q) \longrightarrow 2 NH₃(q) + 3 N₂O(q)
- □ $5 N_2(q) + 6 H_2O(1) \longrightarrow 4 NH_3(q) + 6 NO(q)$
- \square NH₃(q) + 3/2 N₂O(q) \longrightarrow 2N₂(q) + 3/2 H₂O(q)

Question 2 4 Points

Consider the following reaction where Kc = 0.159 at 723 K:

 $N_2(q) + 3 H_2(q) \rightleftharpoons 2 NH_3(q)$

A reaction mixture was found to contain 4.11×10^{-2} moles of $N_2(q)$, 3.99×10^{-2} moles of $H_{2}(\mathbf{g})$ and 5.64×10⁻⁴ moles of NH₃(g), in a 1.00 Liter container.

Indicate **True** (\underline{T}) or **False** (\underline{F}) for each of the following:

- a) In order to reach equilibrium NH3(g) must be produced.
- b) In order to reach equilibrium K_c must decrease.
- c) In order to reach equilibrium $N_2(g)$ must be consumed.
- d) Q is less than K.

Question 3 2 Points

Consider the following equilibrium: $NH_4I(s) \rightleftharpoons NH_3(q) + HI(q)$

Circle the statement that is correct with respect to Kc and Kp for this equilibrium.

 \Box $K_c = K_p$

 \Box $K_c > K_p$

 \Box $K_c < K_p$

Question 4 2 Points

The equilibrium constant, K_c , for the following reaction is 2.76 at 698 K.

$$2 \text{ NH}_3(g) \implies N_2(g) + 3 \text{ H}_2(g)$$

Calculate K_p at this temperature for the following reaction:

$$N_2(q) + 3 H_2(q) = 2 NH_3(q)$$

 $R = 0.0821 L.atm.mol^{-1}.K^{-1}$