Chem 112		Spring 2020	Quiz 5	Whelar
SID		Last	First	
Question 1 6 Points	Consider the following system at equilibrium where $\Delta H^\circ = 198 \text{ kJ}$, and $\text{Kc} = 2.90 \times 10^{-2}$, at 1150K. 2 50 ₃ (g) = 2 50 ₂ (g) + O ₂ (g) When 0.27 moles of SO ₃ (g) are removed from the system at equilibrium at 1150K:			
	The value of Kc	IncreasesDecreasesRemains the sa	The value of Q me	The value of Q Is greater than Is less than Kc Is equal to Kc
	[SO ₂]	 Increases Decreases Remains the sa 	me	
Question 2 6 Points	Consider the following system at equilibrium where $\Delta H^{\circ} = 16.1 \text{ kJ}$, and $Kc = 6.50 \times 10^{-3}$, at 298 K. 2 NOBr(g) = 2 NO(g) + Br ₂ (g) If the TEMPERATURE on the equilibrium system is suddenly increased :			
	The value of Kc	 Increases Decreases Remains the sa 	The value of Q me	 Is greater than K Is less than Kc Is equal to Kc
	[Br2]	IncreasesDecreasesRemains the sa	me	
Question 3 5 Points	Consider the following system at equilibrium where $Kc = 77.5$ and $\Delta H^\circ = -108 \text{ kJ/mol}$ at 600 K. $CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$ The production of $COCl_2(g)$ is favored by: Indicate True (T) or False (F) for each of the following: a) Decreasing the temperature d) Removing Cl_2 .			
	b) Decreasing the volume. c) Removing COCl ₂ .		e) Decreasing th (by changing t	e) Decreasing the pressure (by changing the volume).
Question 4 3 Points	a) What is the conjugate acid of HSO ₄ ⁻			
	 c) Write a net ionic equation to show that ammonia behaves as a Brønsted-Lowry base in water. + H₂O(I) + O(I) 			