\square Last First

Question 1 6 Points	Consider the following system at equilibrium where $\Delta H^{\circ}=198 \mathrm{~kJ}$, and $\mathrm{Kc}=2.90 \times 10^{-2}$, at 1150K. $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ When 0.27 moles of $\mathrm{SO}_{3}(\mathrm{~g})$ are removed from the system at equilibrium at 1150K:
Question 2 6 Points	Consider the following system at equilibrium where $\Delta H^{\circ}=16.1 \mathrm{~kJ}$, and $\mathrm{Kc}=6.50 \times 10^{-3}$, at 298 K . $2 \mathrm{NOBr}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Br}_{2}(\mathrm{~g})$ If the TEMPERATURE on the equilibrium system is suddenly increased:
Question 3 5 Points	Consider the following system at equilibrium where $\mathrm{Kc}=77.5$ and $\Delta H^{\circ}=-108 \mathrm{~kJ} / \mathrm{mol}$ at 600 K . $\quad \mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$ The production of $\mathrm{COCl}_{2}(\mathrm{~g})$ is favored by: Indicate True (T) or False (F) for each of the following: a) Decreasing the temperature. \qquad d) Removing Cl_{2}. b) Decreasing the volume. \qquad e) Decreasing the pressure c) Removing COCl_{2}. \qquad (by changing the volume).
Question 4 3 Points	a) What is the conjugate acid of HSO_{4}^{-} \qquad b) What is the conjugate base of HSO_{4}^{-} \qquad c) Write a net ionic equation to show that ammonia behaves as a Bronsted-Lowry base in water. \qquad $+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ \qquad

