Chem 112	Spring 2020) Quiz	3		Whelan
SID	Last Key		First _	Answer	
Question 1 3 Points	Thallium-201 is used medically to diagnose heart problems. The half-life of thallium-201 is 72.9 hours. If you begin with 55.6 mg of this isotope, what mass remains after 193 hours have passed? Since the decomposition is a radioactive decay reaction, it is first order.				
	$R = \frac{Jm 2}{t' 2}$			-9.51x10*	
	$R = 9.51 \times 10^{-3}$			55.6 = 4.018 = $m \Gamma A T_{\rm H}$	I
	$\int_{n} \frac{[A]_{t}}{[A]_{0}} = -ht$ $[A]_{0} = 55.6; [A]_{t} = ?$				
	t = 193 hrs h = 9.51×10 ⁻³				8.87 mg
Question 2 3 Points	25°C: $2 NO + O_2 = 2 NO_2$ I . Rate = $R[NO]^{\times}[O_2]^{\vee}$				
		$ \begin{bmatrix} NO \end{bmatrix}_0 & \begin{bmatrix} O_2 \end{bmatrix}_0 & M \\ 9.10 \times 10^{-3} & 5.61 \times 10^{-4} \\ 1.82 \times 10^{-2} & 5.61 \times 10^{-4} \\ 9.10 \times 10^{-3} & 1.12 \times 10^{-3} \end{bmatrix} $	4.20×10 ⁻⁴ 1.68×10 ⁻³	4 3	y = 1 x = 2
		1.82×10 ⁻² 1.12×10 ⁻³	3.35×10 ^{-:}	3	<u>_2</u>
	b) What is the overall order of the reaction?				
Question 3 2 Points	The graph on the left was used to determine the Activation Energy for: 2 N ₂ O ₅ (g) = 4 NO ₂ (g) + O ₂ (g) a) Circle the correct labels for graphs x and y axis				(g)
b) Ea = <u>102.3</u> kJ.mol ⁻¹					
Question 4 2 Points	The following plots are for the ○ [A] vs. Time ○ In[A] vs. Time ○ In[A] vs. Time ○ Last Squares Plot slope = -0.080 intercept = 0.916	(A) vs. ○ In[A] vs. ○ In[A] vs. ○ 1/[A] vs. ○ 1/[A] vs. ○ Least S	Time s. Time s. Time Squares Plot 1.144		• cA) vs. Time • In[A] vs. Time • In[A] vs. Time • 1/[A] vs. Time • Least Squares Plot slope = 0.285 intercept = 0.786
	From these plots the it can be	determined that the R	ate = <u>C</u>	.80 [A])

•