Chem 112		Spring 2020		Quiz 5		Whelan
SID		Last Key		First	Answer	
Question 1 6 Points	Consider the following system at equilibrium where $\Delta H^\circ = 198 \text{ kJ}$, and $\text{Kc} = 2.90 \times 10^{-2}$, at 1150K. 2 SO ₃ (g) \rightleftharpoons 2 SO ₂ (g) + O ₂ (g) When 0.27 moles of SO ₃ (g) are removed from the system at equilibrium at 1150K:					
	The value of Kc	 Increases Decreases Remains the same 		The value of Q	Is less	s greater than Kc s less than Kc s equal to Kc
	[SO ₂]	 Increases Decreases Remains t 	5			
Question 2 6 Points	Consider the following system at equilibrium where $\Delta H^\circ = 16.1 \text{ kJ}$, and $\text{Kc} = 6.50 \times 10^{-3}$, at 298 K. 2 NOBr(g) \rightleftharpoons 2 NO(g) \div Br ₂ (g) If the TEMPERATURE on the equilibrium system is suddenly increased :					
	The value of Kc Increases Decreases Remains the same		5	The value of Q	 Is greater than Is less than Ka Is equal to Ka 	
	[Br2]	 Increases Decreases Remains the same 				
Question 3 5 Points	Consider the following system at equilibrium where $Kc = 77.5$ and $\Delta H^{\circ} = -108 \text{ kJ/mol}$ at 600 K. $CO(g) + Cl_2(g) \implies COCl_2(g)$ The production of $COCl_2(g)$ is favored by: Indicate True (T) or False (F) for each of the following:					
	a) Decreasing t	he temperature .	T	d) Removing C	2.	E
	b) Decreasing the volume. T c) Removing COCl ₂ . T		T	e) Decreasing (by changin	the pressure	E
			T		g the volume).	
Question 4 3 Points	a) What is the conjugate acid of HSO 4 ⁻			H₂SO₄		
	b) What is the conjugate base of HSO 4 ⁻				<u>50</u> 4 ²⁻	•
	c) Write a net ionic equation to show that ammonia behaves as a Brønsted-Lowry base in water.					
	<u>NH₃(aq)</u> +	H₂O(I)		+ <u>NH</u> ₄⁺		