Firs \dagger
Answer

Question 1 3 Points	Consider the reaction: $\quad 2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ for which $\Delta H^{\circ}=-2855 \mathrm{~kJ}$ and $\Delta \mathrm{S}^{\circ}=92.70 \mathrm{~J} / \mathrm{K}$ at 298 K . Calculate the entropy change of the UNIVERSE when 1.606 moles of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ react under standard conditions at 298 K . $\Delta S^{\circ} \text { Universe }_{\text {See }}=\frac{7768}{}=\frac{\mathrm{J} / \mathrm{K}}{\mathrm{~K}}$ - Is this reaction reactant or product favored? \qquad Product - If the reaction is product favored, is it enthalpy favored, entropy favored, or favored by both enthalpy and entropy? If the reaction is reactant favored, choose reactant favored. \qquad Both
Question 2 2 Points	A student determines the value of the equilibrium constant to be 3.9×10^{13} for the following reaction. $4 \mathrm{HCl}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g})$ Based on this value of K : - ΔG° for this reaction is expected to be >0 or <0 : - Calculate the free energy change for the reaction of 1.57 moles of $\mathrm{HCl}(\mathrm{g})$ at standard conditions at 298K. Must show work for full credit $\begin{aligned} D G^{0} & =-R T \operatorname{Ln} K \\ & =-8.314(298) \operatorname{Ln} 3.9 \times 10^{13} \\ & =-7.75 \times 10^{4} \mathrm{~J} \\ & =-77.5 \mathrm{~kJ} \end{aligned}$ Note the stoichiometry highlighted $\begin{aligned} D G^{0}{ }_{r \times n} & =1.57 \times(-77.5 / 4) \\ & =-30.4 \mathrm{~kJ} \end{aligned}$ $\Delta \boldsymbol{G}_{r \times n}^{\circ}=-30.4 \mathrm{~kJ}$
Question 3 3 Points	Without doing any calculations, match the following thermodynamic properties with their appropriate numerical value given on the right for the following exothermic reaction. $2 \mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g}) \longrightarrow 4 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})$

$$
\begin{aligned}
& \mathrm{DS}^{0}{ }_{\text {univ }}=\mathrm{DS}^{0}{ }_{\text {sys }}+\mathrm{DS}^{0}{ }_{\text {Surr }} \\
& \mathrm{DS}^{0}{ }_{\text {sys }}=92.7 \mathrm{~J} / \mathrm{K} \ldots \text { see question, this is given } . \\
& D S^{0}{ }_{\text {surr }}=-\mathrm{DH}^{0}{ }_{\mathrm{rxn}} / \mathrm{T} \\
& =-(-2,855,000 / 298) \\
& \text { = } 9581 \mathrm{~J} / \mathrm{K} \\
& D S^{0}{ }_{\text {univ }}=92.7+9581 \\
& =9673.7 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

In an Exam many would given this answer and received significant partial credit but you would have omitted the stoichiometry.
a) The question asks $\mathrm{DS}^{0}{ }_{\text {univ }}$ when 1.606 mol of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ reacts
b) The balanced chemical equation:-

$$
2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g})=4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\begin{aligned}
\mathrm{DS}^{0}{ }_{\text {univ }} & =1.606 \times(9673.7 / 2) \\
& =7767.9 \mathrm{~J} / \mathrm{K}
\end{aligned}
$$

