SID

Last Key

First Answer

Question 1 3 Points

Write a balanced nuclear equation for the following:

- a) ²⁸15**P** undergoing positron emission:
- $^{28}_{15}$ P = $^{0}_{+1}$ e + $^{28}_{14}$ Si
- b) 41₂₀Ca undergoing electron capture:
- ⁴¹₂₀Ca + ⁰₋₁e ₌ ⁴¹₁₉K
- c) $^{60}_{27}$ Co is one of many radioactive isotopes that initially can undergo only one type of emission: $^{60}_{27}$ Co = $^{0}_{-1}$ e + $^{60}_{28}$ Ni

Question 2 5 Points

What is the binding energy in kJ/mol nucleons for nitrogen-14?

The required masses (g/mol) are: ${}^{1}_{1}H$ = 1.00783; ${}^{1}_{0}n$ = 1.00867; ${}^{14}_{7}N$ = 14.00307 Remember the mass of ${}^{1}_{1}H$ also includes the mass of the electron. $c = 2.998 \times 10^{8} \text{ m.s}^{-1}$

$$^{14}_{7}$$
N = $7(^{1}_{1}$ H + $^{0}_{-1}$ e) + $7(^{1}_{0}$ n)
= $7(1.00783)$ + $7(1.00867)$
= 14.1155 g.mol⁻¹

E =
$$\triangle$$
mc²
= 1.1243x10⁻⁴(2.998x10⁸)²
= 1.0105x10¹³ J.mol⁻¹
= 1.0105x10¹⁰ kJ.mol⁻¹

$$\Delta m = 14.1155 - 14.00307$$

= 0.11243 g.mol⁻¹
= 1.1243x10⁻⁴ kg.mol⁻¹

$$^{14}_{7}$$
N: $7(^{1}_{1}H) + 7(^{1}_{0}n)$
Nucleons = 7+7 = 14

$$E_b = 1.0105 \times 10^{10} / 14$$

= 7.218 \times 10^8 kJ.mol⁻¹.nucleon⁻¹

Question 3 2 Points

Radioactive radon-222, found in many homes, is a potential health hazard. The half-life of radon-222 is 3.82 days. How much time is required for the activity of a sample of radon-222 to fall to 8.82 percent of its original value?

$$t_{1/2} = \frac{\text{Ln 2}}{k}$$

$$k = \frac{\text{Ln 2}}{t_{1/2}}$$

$$k = \text{Ln 2/3.82}$$

$$= 0.1815$$

$$Ln \frac{[N]_t}{[N]_0} = -kt$$

 $[N]_t = 0.0882 : [N]_0 = 1$

$$t = -2.418/-0.1815 = 13.38$$
 days