\qquad
\qquad
\qquad

Ce 58	$\begin{gathered} \mathrm{Pr} \\ 59 \\ 149 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Nd} \\ 60 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{Pm} \\ 61 \\ (145) \\ \hline \end{array}$	$\begin{gathered} \mathrm{Sm} \\ \mathrm{Sm}_{152} \\ 1026 \end{gathered}$	$\begin{array}{\|l\|} \hline \mathrm{Eu} \\ 63 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Gd} \\ 64 \end{array}$	$\begin{array}{\|c\|} \hline \text { Tb } \\ 65 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { Dy } \\ 66 \\ \hline \end{array}$	$\underset{67}{\mathrm{Ho}}$	$\begin{aligned} & \hline \mathrm{Er} \\ & \hline 68 \end{aligned}$	$\overline{m o m}$	$\begin{aligned} & \mathrm{Yb} \\ & 70 \end{aligned}$	Lu
$\begin{gathered} \text { Th } \\ 90 \\ 923 \end{gathered}$	Pa	$\begin{aligned} & \mathrm{U} \\ & 92 \end{aligned}$	$\underset{93}{\mathrm{~Np}}$	$\begin{array}{\|l} \hline \mathrm{Pu} \\ 94 \end{array}$	$\begin{gathered} \mathrm{Am} \\ 95 \\ 243.06 \end{gathered}$	$\begin{gathered} \text { Cm } \\ 96 \\ 12477 \end{gathered}$	$\begin{gathered} \text { Bk } \\ 97 \\ 12481 \end{gathered}$	98	$\begin{aligned} & \mathrm{Es} \\ & 99 \end{aligned}$	Fm_{100}	$\begin{aligned} & \mathrm{Md} \\ & 101 \end{aligned}$	$\begin{aligned} & \text { No } \\ & 102 \end{aligned}$	$\begin{gathered} \mathrm{Lr} \\ 103 \end{gathered}$

Useful Information

- $\mathrm{N}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
- $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
- $\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- $\lambda v=c$
- $\mathrm{E}=\mathrm{h} v$
- Density $=\mathrm{m} / \mathrm{v}$
Question $2 \operatorname{Draw}$ the Lewis dot structures of $\mathfrak{N} \mathrm{O}_{2}{ }^{-}$and $\mathcal{N} \mathrm{O}_{2}{ }^{+}$sfowing any resonance 10 Points structures where applicable.

$\mathrm{NO}_{2}{ }^{+}$	$\mathfrak{N O}_{2}^{+}$

1. What is the \mathcal{N} to O bond order in:

$$
\mathcal{N O}_{2}^{+}: \square
$$

2. Which molecule fas the smallest $O-\mathcal{N}-\mathrm{O}$ bond angle?

Question 3 Give the Electron Pair Geometry and the Molecular Geometry for each of the 16 Points following 'Lewis Dot Structures '

	Electron Pair Geometry:
	Molecular Geometry:

$\left.\right\|_{\mathrm{H}} ^{\mathrm{N}} \mathrm{H}$	Electron Pair Geometry:

$\ddot{\mathrm{F}}:$	Electron Pair Geometry:
$: \mathrm{Fl}$:	
Molecular Geome try:	

:
\qquad

Question 4 Give the formalcharge of eachatom in each of the two resonance structures 7 Points for the azide ion shown below.

What is the charge on an azide ion?

Question 5 Give the correct formula for each of the following ionic compounds? 6 Points

1. Potassium permanganate \qquad
2. Ammonium carbonate \qquad
3. Magne sium nitrite \qquad
4. Aluminum sulfite \qquad
5. Calcium sulfate \qquad
6. Iron(III) oxide

Question 6 6 Points

For the molecule depicted below what are the expected bond angles for 1, 2 and 3.

1.
2.
3.

In the laboratory a student combines 47.5 mL of a $0.304 \mathcal{M} \mathcal{B a}\left(\mathcal{N}\left(\mathrm{O}_{3}\right)_{2}\right.$ nitrate solution with 29.2 mL of a $0.379 \mathscr{M} \mathfrak{N} \mathfrak{N} \mathcal{N} \mathrm{O}_{3}$ solution.

What is the finalconcentration of nitrate anion?

Question 8 6 Points

With respect to the following molecules circle those, which you expect to be polar.

CCl_{4}	CO_{2}	$\mathcal{N} \mathcal{H}_{3}$
BF_{3}	$\mathcal{H}_{2} \mathrm{O}$	$\mathcal{X e} \mathcal{F}_{4}$

Question 9 3 Points

Would you expect the fypothetical molecule $\mathcal{P B r}_{3} \mathcal{F}_{2}$ to be polar or non-polar? Briefly explain your reasoning.

Question 10 10 Points

The fybridization about atom 1
$s p^{3}$
$\mathcal{N u m b e r}$ of pi bonds in the molecule.
The fybridization about atom 2.
$s p^{2}$
The orbitals used to make the pi bond between atoms 2 and 3. p

$$
\text { The fybridization about atom } 4 \text {. }
$$

Question 11 3 Points

Answer the following with respect to the following molecule:

What type of hybridization would you invoke to describe the bonding about the central atom in $X_{e} \mathcal{F}_{4}$?

