

40.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91 231.04	92 238.03	93 237.05	94 (240)	95 243.06	96 (247)	97 (248)	98 (251)	99 252.08	100 257,10	101 (257)	102	103
	201101	200.00	201100	12101	2 10.00	121	12.007	120.1	202100		12017	200110	

Useful Information

$$\begin{split} N &= 6.02 x 10^{23} \text{ mot}^1 \\ h &= 6.626 x 10^{-34} \text{ J.s} \end{split}$$

2

- $c = 2.998 \times 10^8 \text{ m/s}$
- $\lambda v = c$
- E = hv
- Density = m/v

Question 1Give the complete electronic configuration (spectroscopic notation) for the10 Pointsfollowing:

- 1. Sodium $1s^2 2s^2 2p^6 3s^1$
- 2. Chlorine $1s^22s^22p^63s^23p^5$

Give the noble gas electronic configuration for the following

- 3. Mn $[Ar]4s^23d^5$
- 4. Fe³⁺ [Ar]3d⁵
- 5. Cu [Ar]4s¹3d¹⁰
- Question 2 For the elements 1-20 inclusive (includes element 1 and element 20) give the symbol for those that are diamagnetic.

He, Be, Ne, Mg, Ar, Ca

Question 3 Consider the following elements:

8 Points

Ge, Si, Sn, C

Which element would you expect:

- 1. to have the smallest atomic radius? C
- 2. to be most metallic Sn
- 3. to have the largest ionization energy
- 4. to be least electronegative Sn

С

Question 4 Consider the following elements:

6 Points

phosphorus, silicon, aluminum, sulfur

Which element would you expect:

- 5. to be most metallic Al
- 6. to have the largest ionization energy S
- 7. to be least electronegative Al

12 Points

 NO_2^+ : 2 NO_2^- : 1.5

2. Which molecule has the shortest N to O bond length? NO_2^+

Question 7 Give the Electron Pair Geometry and the Molecular Geometry for each of the following 'Lewis Dot Structures'.

Question 8Give the formal charge of each atom in each of the two resonance structures7 Pointsfor the azide ion shown below.

What is the charge on an azide ion? -1

Question 9 Give the correct formula for each of the following ionic compounds? 6 Points

1.	Ammonium carbonate	(NH ₄) ₂ CO ₃
2.	Iron(III) oxide	Fe_2O_3
3.	Aluminum sulfite	$AI_2(SO_3)_3$
4.	Magnesium nitrite	Mg(NO ₂) ₂
5.	Calcium sulfate	CaSO ₄
6.	Potassium permanganate	KMnO ₄

Question 10 For the molecule depicted below what are the expected bond angles for 1, 2 and 3.

$$H$$

$$H_{3}C \xrightarrow{1} C \xrightarrow{1$$

Question 11In the laboratory a student combines 47.5 mL of a 0.304 M Ba(NO3)28 Pointsnitrate solution with 29.2 mL of a 0.379 M Ba(OH)2 solution.

What is the final concentration of **barium** cation?

0.304 x 0.0475 = 0.01444 mol Ba(NO₃)₂ 0.01444 mol Ba(NO₃)₂ x [1 Ba²⁺/1 Ba(NO₃)₂] = 0.01444 mol Ba²⁺

 $0.379 \times 0.0292 = 0.01106 \text{ mol Ba}(OH)_2$ 0.01106 mol Ba(OH)_2x [1 Ba²⁺/1 Ba(OH)_2] = 0.01106 mol Ba²⁺

Total Ba²⁺ = 0.01444 + 0.01106 = 0.0255 mol New Volume = 47.5 + 29.2 = 76.7 mL = 0.0767 L

[Ba²⁺] = 0.0255/0.0767 = 0.332 M

Question 12 According to the following reaction, how many grams of potassium hydroxide are necessary to form 0.628 moles potassium carbonate?

 $CO_2(g) + 2 KOH(aq) = K_2CO_3(aq) + H_2O(I)$

0.628 mol K₂CO₃ x [2 KOH/1 K₂CO₃] = 1.256 mol KOH

1.256 mol KOH x (56.11 g/ 1 mol) = 70.5g