\qquad - \qquad

$\stackrel{1}{\prime}$	$11 / A$	The Periodic Table										IIIA INA	IVA	VA			$\begin{aligned} & \text { VIIIA } \\ & \hline \mathrm{He} \end{aligned}$	
$\begin{gathered} 0 \\ 1 \\ 1.01 \end{gathered}$												2 4.00						
$\begin{gathered} \mathrm{Li} \\ 3 \\ 6.94 \end{gathered}$	$\begin{array}{c\|} \hline \mathrm{Be} \\ 4 \\ 9.01 \end{array}$												$\begin{array}{\|c\|} \hline \text { B } \\ 5 \\ 5 \\ 10.81 \end{array}$	$\begin{array}{\|c\|} \hline \text { C } \\ 6 \\ 6 \\ 12.01 \end{array}$	 7 14.01	0 8 6.00	F 9 9.00	Ne 10 20.18
$\begin{gathered} \mathrm{Na} \\ 11 \\ 22.99 \end{gathered}$	$\begin{array}{\|c\|} \hline 12 \\ \hline 12.31 \\ \hline \end{array}$	${ }_{1 I \prime}$	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB	IIB	$\begin{array}{\|c\|} \hline 13 \\ 26.98 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 14 \\ \mathrm{Si} \\ 28.09 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{P} \\ 15 \\ 30.97 \\ \hline \end{array}$	$\begin{gathered} \hline \mathbf{S} \\ 16 \\ 32.07 \\ \hline \end{gathered}$	$\begin{gathered} 17 \\ 17 \\ 35.45 \end{gathered}$	Ar 18 39.95	
$\begin{gathered} \mathrm{K} \\ 19 \\ 39.10 \end{gathered}$	$\begin{gathered} \mathrm{Ca} \\ 20 \\ 40.08 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{Sc} \\ 21 \\ 44.96 \\ \hline \end{array}$	$\begin{gathered} \mathrm{Ti} \\ 22 \\ 27.88 \end{gathered}$	$\begin{array}{\|c\|} \hline \mathrm{V} \\ 23 \\ 50.94 \end{array}$	$\begin{aligned} & \mathrm{Cr} \\ & 24 \\ & 52.00 \end{aligned}$	$\begin{array}{\|c\|} \hline \begin{array}{c} M n \\ 25 \\ 54.94 \end{array} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{Fe} \\ & 26 \\ & 55.85 \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Co } \\ 27 \\ 58.93 \end{array}$	$\begin{array}{c\|} \hline \mathrm{Ni} \\ 28 \\ 58.69 \end{array}$	$\begin{array}{c\|} \hline \mathrm{Cu} \\ 29 \\ 63.55 \end{array}$	$\begin{gathered} \mathrm{Zn} \\ 30 \\ 65.39 \end{gathered}$	$\begin{gathered} \mathrm{Ga} \\ 31 \\ 69.72 \end{gathered}$	$\begin{gathered} \mathrm{Ge} \\ 32 \\ 72.61 \end{gathered}$	$\begin{gathered} \text { As } \\ 33 \\ 74.92 \end{gathered}$	$\begin{array}{\|c\|} \hline 3 \mathrm{Se} \\ 34 \\ 78.96 \end{array}$	$\begin{gathered} \mathrm{Br} \\ 35 \\ 79.90 \end{gathered}$	Kr 36 83.80	
$\begin{array}{\|c\|} \hline \mathrm{Rb} \\ 37 \\ 85.47 \end{array}$	$\begin{gathered} \mathrm{Sr} \\ 38 \\ 87.62 \end{gathered}$	$\begin{array}{\|c\|} \hline Y \\ 39 \\ 88.91 \end{array}$	$\begin{gathered} \mathrm{Zr} \\ 40 \\ 91.22 \end{gathered}$	$\begin{gathered} \mathrm{Nb} \\ 41 \\ 92.91 \end{gathered}$	$\begin{aligned} & \mathrm{Mo} \\ & 42 \\ & 95.94 \end{aligned}$	$\begin{gathered} \mathrm{Tc} \\ 43 \\ (97.9) \end{gathered}$	$\begin{gathered} \mathrm{Ru} \\ 44 \\ 101.07 \end{gathered}$	$\begin{gathered} \text { Rh } \\ 45 \\ 102.91 \end{gathered}$	$\begin{gathered} \mathrm{Pd} \\ 46 \\ 106.42 \end{gathered}$	${ }_{47}$ 107.87	$\begin{gathered} \mathrm{Cd} \\ 1 \mathbf{1 1 2 . 4 1}^{2} \end{gathered}$	$\begin{aligned} & \text { In } \\ & 49 \end{aligned}$	$\begin{aligned} & \mathrm{Sn} \\ & 50 \end{aligned}$ 18.71	$\begin{gathered} \mathrm{Sb} \\ 51 \\ 12176 \end{gathered}$	$\begin{gathered} \mathrm{Te} \\ 52 \\ 127.60 \end{gathered}$	$\begin{gathered} \mathbf{5 3} \\ 126.90 \end{gathered}$	Xe 54 131.29	
$\begin{gathered} \mathrm{Cs} \\ 55 \\ 132.91 \end{gathered}$	$\begin{gathered} \mathrm{Ba} \\ 56 \\ 57.331 \end{gathered}$	$\begin{gathered} \mathrm{La} \\ 57 \\ 138.91 \end{gathered}$	$\begin{aligned} & \mathrm{Hf} \\ & 72 \end{aligned}$	$\begin{gathered} \mathrm{Ta} \\ 73 \end{gathered}$	$\begin{gathered} W \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Re} \\ 75 \\ 186.21 \end{gathered}$	$\begin{gathered} \text { Os } \\ 76 \\ 190.2 \end{gathered}$	$\begin{gathered} \mathrm{lr} \\ 77 \\ 92.22 \end{gathered}$	$\begin{gathered} \mathrm{Pt} \\ 78 \\ 185 \end{gathered}$	$\begin{gathered} \mathrm{Au} \\ 79 \\ \hline 197.97 \end{gathered}$	${ }_{80}^{\mathrm{Hg}}$ ${ }^{80}$	$\begin{gathered} \mathrm{TI} \\ 81 \\ 204.38 \end{gathered}$	$\begin{gathered} \mathrm{Pb} \\ 82 \\ 207.2 \end{gathered}$	$\begin{gathered} \mathrm{Bi} \\ 83 \\ 288.98 \end{gathered}$	$\begin{gathered} \text { Po } \\ 84 \\ \hline 2099 \end{gathered}$	$\begin{gathered} \text { At } \\ 85 \\ \text { (210) } \end{gathered}$	$\begin{aligned} & \mathrm{Rn} \\ & 86 \\ & \text { (222) } \end{aligned}$	
$\begin{array}{\|c\|} \hline \mathrm{Fr} \\ 87 \\ 223.02 \end{array}$	Ra 88 226.03	$\begin{gathered} \text { Ac } \\ 89 \\ 227.03 \end{gathered}$	$\begin{gathered} \text { Rf } \\ 104 \\ 3 \\ \hline(261) \end{gathered}$	$\begin{aligned} & \hline \text { Db } \\ & 105 \\ & (262) \end{aligned}$	$\begin{aligned} & \mathrm{Sg} \\ & 106 \\ & (263) \end{aligned}$	$\begin{array}{\|c} \hline \text { Bh } \\ 107 \\ (262) \end{array}$	$\begin{aligned} & \mathrm{Hs} \\ & 108 \\ & (265) \end{aligned}$	Mt (266)										

$\begin{gathered} \mathrm{Ce} \\ 58 \\ 140.12 \end{gathered}$	$\begin{aligned} & \hline \mathrm{Pr} \\ & 59 \end{aligned}$	$\begin{array}{c\|} \hline \mathrm{Nd} \\ 60 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Pm}_{61} \\ \hline \end{array}$	Sm	$\begin{array}{\|c\|} \hline \text { Eu } \\ 63 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Gd} \\ 64 \\ 157.25 \end{array}$	$\begin{array}{\|c\|} \hline \text { Tb } \\ 65 \\ 158.93 \end{array}$	Dy 666 162.50	$\left[\left.\begin{array}{c} \mathrm{Ho} \\ 67 \\ 164.93 \end{array} \right\rvert\,\right.$	$\begin{gathered} \mathrm{Er} \\ 68 \end{gathered}$	Tm_{69}	$\begin{aligned} & \mathrm{Yb} \\ & 70 \end{aligned}$	71 7174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Id	No	Lr
232.04 [231.04 238.03 237.05				94	95	96	97	98	99	100	101	102	103
				(240)	243.06	247	248)	251)	252.0		257)	259.1	

Useful Information

- $\mathrm{N}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$
- $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$
- $\mathrm{c}=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$
- $\lambda v=c$
- $\mathrm{E}=\mathrm{h} v$
- Density $=\mathrm{m} / \mathrm{v}$

Question 1 Give the complete electronic configuration (spectroscopic notation) for the 10 Points following:

1. Sodium $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
2. Chlorine $\quad 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{5}$

Give the noble gas electronic configuration for the following
3. $\mathcal{M n}$ $[\mathfrak{A r}] 4 s^{2} 3 d^{5}$
4. $\mathcal{F e}^{3+}$
$[\mathfrak{A r}] 3 d^{5}$
5. Cu
$[\mathcal{A r}] 4 s^{1} 3 d^{10}$

Question 2
6 Points

For the elements $1-20$ inclusive (includes element 1 and element 20) give the symbolfor those that are diamagnetic.

$$
\mathfrak{H e}, \mathcal{B e}, \mathcal{N e}, \mathfrak{M g}, \mathfrak{A r}, \mathrm{Ca}
$$

Question 3 Consider the following elements:
8 Points
$\mathcal{G e}, \mathcal{S i}, \mathcal{S} n, \mathcal{C}$

Which element would you expect:

1. to have the smallest atomic radius?
2. to be most metallic Sn
3. to have the largest ionization nergy
4. to be leastelectronegative Sn

Question 4 Consider the following elements:
6 Points
phosphorus, sificon, aluminum, sulfur

Which element would you expect:
5. to be most metalfic
6. to have the largest ionization energy
. to be le ast electronegative
Question 6 Drawthe Lewis dot structures of $\mathcal{N} \mathrm{O}_{2}$ and $\mathcal{N} \mathrm{O}_{2}{ }^{+}$showing any re sonance
10 Points structures where applicable.

1. What is the \mathcal{N} to O bond order in:

$$
\mathcal{N} \mathrm{O}_{2}^{+}: 2 \quad \mathcal{N} \mathrm{O}_{2}: 1.5
$$

2. Which molecule fas the sfortest \mathcal{N} to O bond length? $\mathcal{N} \mathrm{O}_{2}{ }^{+}$

Question 7 Give the Electron Pair Geometry and the Molecular Geometry for each of the 16 Points following 'Lewis Dot Structures'.

$: \ddot{\mathrm{C}} \mid:$	Electron Pair Geometry:	Tetrafedron
:Cl:	Mole cular Geome try:	Tetrafedron
	Electron Pair Geometry:	Tetrafiedron
H	Mole cular Geome try:	Trigonal Pyramid
	Electron Pair Geometry:	Trigonal Bipyramidal
: F:	Mole cular Geome try:	T-S haped
	Electron Pair Geometry:	Octafedron
	Molecular Geometry:	Square Pyramidal

Questions Give the formalcharge of eachatom in each of the two resonance structures
7 Points for the azide ion shown below.

What is the charge on an azide ion? -1

Question 9 Give the correct formula for each of the following ionic compounds?
6 Points

1. Ammonium carbonate $\quad\left(\mathcal{N}_{\left(\mathcal{H}_{4}\right)}^{2} \mathrm{CO}_{3}\right.$
2. Iron(III) oxide
$\mathrm{Fe}_{2} \mathrm{O}_{3}$
3. Aluminum sulfite
$\mathcal{A l}_{2}\left(\mathrm{SO}_{3}\right)_{3}$
4. Magne sium nitrite
$\operatorname{Mg}\left(\mathcal{N}\left(\mathrm{O}_{2}\right)_{2}\right.$
5. Calcium sulfate
CaSO_{4}
6. Potassium permanganate
SOMnO_{4}

Question 10 For the molecule depicted belowwhat are the expected bond angles for 1, 6 Points 2 and 3.

1. 120
2. 109
3. 120

Question 11 8 Points

In the laboratory a student combines 47.5 mL of a $0.304 \mathcal{M} \mathcal{B a}\left(\mathcal{N}\left(\mathrm{O}_{3}\right)_{2}\right.$ nitrate solution with 29.2 mL of $\operatorname{a} 0.379 \mathcal{M} \mathcal{B a}(O \mathcal{H})_{2}$ solution.

What is the final concentration of barium cation?
$0.304 \times 0.0475=0.01444 \operatorname{mol} \mathcal{B a}\left(\mathfrak{N}\left(\mathrm{O}_{3}\right)_{2}\right.$
$0.01444 \mathrm{~mol} \mathrm{Ba}\left(\mathcal{N}\left(\mathrm{O}_{3}\right)_{2} \times\left[1 \mathcal{B a}^{2+} / 1 \mathcal{B a}\left(\mathcal{N} \mathrm{O}_{3}\right)_{2}\right]=0.01444 \mathrm{~mol} \mathrm{Ba}^{2+}\right.$
$0.379 \times 0.0292=0.01106 \mathrm{~mol} \mathcal{B a}(O \mathcal{H})_{2}$
$0.01106 \operatorname{mol} \mathcal{B a}(O \mathcal{H})_{2}$ x $\left[1 \mathcal{B a}^{2+} / 1 \mathcal{B a}(O \mathcal{H})_{2}\right]=0.01106 \mathrm{~mol} \mathcal{B a}^{2+}$

Total $\mathcal{B a}^{2+}=0.01444+0.01106=0.0255 \mathrm{~mol}$
$\mathcal{N e} w \mathcal{V}$ olume $=47.5+29.2=76.7 \mathrm{~mL}=0.0767 \mathcal{L}$
$\left[\mathcal{B a}^{2+}\right]=0.0255 / 0.0767=0.332 \mathcal{M}$

Question 12 According to the following reaction, fowmany grams of potassium 5 Points
$\mathrm{CO}_{2}(g)+2 \mathcal{K O H}(a q)=\mathcal{K}_{2} \mathrm{CO}_{3}(a q)+\mathcal{H}_{2} \mathrm{O}(l)$
$0.628 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{CO}_{3}$ x $\left[2 \mathcal{K O H} \mathcal{H} / \mathcal{K}_{2} \mathrm{CO}_{3}\right]=1.256 \mathrm{~mol} \mathrm{KO} \mathcal{H}$
$1.256 \mathrm{~mol} \mathcal{K O H} x(56.11 \mathrm{~g} / 1 \mathrm{~mol})=70.5 \mathrm{~g}$

