IA	IA I											VIIIA					
н	The Periodic Table											He					
1													2				
1.01	IIA	IIIA IVA VA VIA VIIA 4.0												4.00			
Li	Be	B C N O F											Ne				
3	4	5 6 7 8 9										10					
6.94	9.01	10.81 12.01 14.01 16.00 19.00 20.1												20.18			
Na	Mg											A	Si	P	S	CI	Ar
11	12	Manager										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	1B -	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- C (Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	56		
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

SID	Last	First							
Question 1 10 Points	Consider the following endothermic equilibrium reaction: $COBr_2(g) \Leftrightarrow CO(g) + Br_2(g)$								
	The production of CO(g) is	s favored by - Circle the correct answer							
	1. True False	Increasing the temperature.							
	2. True False	Decreasing the pressure.							
	3. True False	Decreasing the volume.							
	4. True False	Removing COBr ₂ .							
	5. True False	Removing Br ₂ .							
Question 2 4 Points	1. Write a net ionic e waten	equation to show that hydrofluoric acid, behaves as an acid in							
	HF(aq) + H2O(I)	⇔+							
	2. Write a net ionic e water .	equation to show that isoquinoline, behaves as a base in							
Our ation 2									
Question 3 4 Points	Assign each substance giv	en on the lett with a category given on the right .							
	HF	1. Strong Acid							
	LiOH	2. Weak Acid							
	(C ₂ H ₅) ₂ NH	3 . Strong Base							
	HNO2	4 . Weak Base							
Question 4 4 Points	Consider the amino acids l Lysine, K _a = 1.0×10 ⁻⁹ Tyrosine, K _a = 1.6×2	isted below:Histidine, $K_a = 7.9 \times 10^{-7} @ 25^{\circ}C$ $2 @ 25^{\circ}C$ Histidine, $K_a = 7.9 \times 10^{-7} @ 25^{\circ}C$ $10^{-10} @ 25^{\circ}C$ Cysteine, $K_a = 5.0 \times 10^{-9} @ 25^{\circ}C$							
	1. The strongest of t	he four acids is:							
	2. The acid with the l	argest pK _a value is:							
Question 5 8 Points	The pH of an aqueous solu 1. The pOH of this so	tion was found to be 12.00 . Dution is:							
	2. The hydronium con	centration is:							
	3. The hydroxide con	centration is:							
	4. This solution is: (a buffer, acidic, n	eutral basic)							

Question 6 12 Points	1.	In the following net ionic equation, identify each species as either a Bronsted- Lowry acid or a Bronsted-Lowry base . $CH_3COO^- + HSO_3^- \Leftrightarrow CH_3COOH(aq) + SO_3^{2-}$									
		- Circle the appropriate answer									
		CH₃COO ⁻	B-L Acid	B-L Base							
		HSO3 ⁻	B-L Acid	B-L Base							
		СН₃СООН	B-L Acid	B-L Base							
		50 ₃ ²⁻	B-L Acid	B-L Base							
	2.	The formula for tl	he conjugate _	of Cł	l₃COO⁻ is:						
	3.	The formula for tl	he conjugate _	of H	SO3 ⁻ is:						
Question 7	Are tl	he following aqueous	fer solutions?								
8 Points					- Circle the	e appro	briate	answer			
		1. 0.40M NH₄Cl a	and 0.30M NH ₃		Yes	No					
		2. 0.30M HF and	0.10 M NaF		Yes	No					
		3. 0.40M HI and	0.40M NaI		Yes	No					
	Whick	h buffer would abso	rb the greates	t quantity of H	l₃O⁺ ?	1	2	3			
Question 8 4 Points	A buffer solution made from HClO and KClO has a pH of 7.15. If pKa for HClO is 7.46, this implies that: - Circle, the appropriate answer										
		1. [,, ,							
		2. [[CIO ⁻]/[HCIO] >	1							
		3. [[ClO ⁻]/[HClO] <	1							
Question 9	A buffer solution is 0.476 M in CH3COOH and 0.379 M in CH3COONa. If Ka for										

Question 9 A buffer solution is 0.476 M in CH3COOH and 0.379 M in CH3COONa. If Ka for ^{4 Points} CH3COOH is 1.8×10⁻⁵, what is the pH of this buffer solution? [Show Work] Question 10 A small amount of **strong acid** is added to a **buffer** made from **HCN** and **NaCN**. What changes if any will occur to the solution.

- Circle the appropriate answer

					,, ,						
	1.	рН	Increase	Decrease	Remain the same						
	2.	[OH-]	Increase	Decrease	Remain the same						
	3.	[HCN]	Increase	Decrease	Remain the same						
	4.	[CN ⁻]	Increase	Decrease	Remain the same						
Question 11 6 Points			Gamma rays X-rays Ult	traviolet Infrared rays rays (heat)	rtzian waves (radio, TV)						
			Red Region								
	a.	Rank the energy:	e following (1-3) fori	ms of electromagnetic 1= Lowest Energy	radiation in order of increasing 3 = Highest Energy						
		Visible:		Radio wave:	Gamma ray:						
	 Bank the following (1-3) forms of electromagnetic radiation in order of wavelength: 1= Shortest Wavelength 3 = Longest V 										
		Infrared	d:	Radio wave:	Visible:						
Question 12	Write a balanced nuclear equation for the following:										
10 Points	1. The nuclide 222 86 Rn undergoes alpha emission.										
	2. The nuclide ¹⁸ 7N undergoes beta decay.										
	3. The nuclide ¹²⁹ 55 Cs decays by electron capture .										
	 The nuclide ²⁵₁₃Al undergoes positron emission. 										
	Whic	h of the a	bove represents the	e decay of an isotope v	vith too many neutrons						

Question 13 Iodine-131 (half-life, 8.04 days) is used as a treatment for thyroid cancer. How many ^{3 Points} milligrams of an 80.1 milligram sample of iodine-131 will remain after 40.2 days? [Show Work] Question 14 According to the following reaction, how many **moles** of **potassium hydroxide** are ^{4 Points} necessary to form 0.668 moles **potassium carbonate**? carbon dioxide (g) + potassium hydroxide (aq) → potassium carbonate (aq) + water (l) [Show Work]

Moles of potassium hydroxide:

Question 15 An aqueous solution of hydrobromic acid is standardized by titration with a 0.0768 M solution of barium hydroxide. If 39.2 mL of base are required to neutralize 25.3 mL of the acid, what is the molarity of the hydrobromic acid solution?

Molarity of hydrobromic acid:

Question 16 According to the following reaction, how many moles of ammonium nitrite are needed to form 30.3 grams of water?

ammonium nitrite (aq) → nitrogen (g) + water (l)

Moles of ammonium nitrite:

Exam III Score