
IA	,																VIIIA
Н			_ T	'he	· Pe	erio	odi	сΤ	ab	le							He
1.01	IIA							•		. •		IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be]										В	С	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12	Marine										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB.	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	- In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr i	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	2000		
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				W157 17	745 2359	11/07/0	PG 200	5587		100		WHEN I'M	7500	70.000			
					77.							W	7		_		

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

SID				

Last

First

Question 1

- The letter that corresponds to a pair of valence electrons shared by two atoms.
- 2. The **letter** that corresponds to a pair of valence electrons **held** by a **single atom**.
- 3. How many of these molecules obey the octet rule?
- 4. Circle the structure(s) that contain a triple bond.
- 5. How many of these molecules have resonance structures?

Question 2 Draw the best Lewis Dot Structure for the following molecules 12 Points

PH ₃	SF ₂
HCN	do -
HCN	CIO ₃ -

Question 3 10 Points

Draw the Lewis Dot Structure for CH_3COOH in the space provided on the left. Then answer the questions of the right.

- 1. The **number** of **C-H** bonds:
- 2. The **number** of **O-H** bonds:
- 3. The **number** of **C-C** bonds:
- 4. The **number** of **C-O** bonds:
- 5. Total number of unshared pairs:

Question 5 10 Points

- 1. Name the compound with the formula BCl₃?
- 2. Name the compound with the formula SF₆?
- 3. Name the compound with the formula SO_2 ?
- 4. The formula for dioxygen difluoride?
- 5. The formula for phosphorus pentachloride?

Question 6 22 Points

В

C

D

Ε

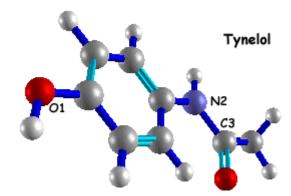
F

- 1. The molecular geometry for B is:
- 2. The molecular geometry for F is:
- 3. The molecule(s) with a bond angle of $\sim 109^{\circ}$
- 4. The molecule(s) with a bond angle of $\sim 180^{\circ}$
- 5. The molecule(s) with trigonal planar molecular geometry:
- 6. The molecule(s) with an angular/bent molecular geometry:
- 7. The molecule in 6. that has the largest bond angle:

Question 7 6 Points

Classify each of the molecules in Question 6 as wither Polar (P) or Non Polar (NP)?

- A.


D.

E.

F.

- 1. The **predicted** bond angle about **1** is:
- 2. The predicted bond angle about 2 is:
- The predicted bond angle about 3 is:

Question 9 6 Points

What is the predicted bond angle about the atoms indicated on Tylenol:

- 1. Oxygen 1:
- 2. Nitrogen 2: ____
- 3. **Carbon** 3:

Question 10 Write the **equilibrium expressions** for the following reactions: 6 Points

1.
$$2 NO(q) + Cl_2(q) \Leftrightarrow 2 NOCl(q)$$

2.
$$2 H_2 S(s) \Leftrightarrow 2 H_2(q) + S_2(q)$$

3.
$$F^- + H_2O(I) \Leftrightarrow HF(\alpha q) + OH^-$$

Question 11 For the following equilibria, indicate using the appropriate letter whether: 6 Points

- A. Appreciable quantities of all species are present at equilibrium.
- B. The forward reaction is favored at equilibrium.
- C. The reverse reaction is favored at equilibrium.

1.
$$HF(aq) + H_2O(1) \Leftrightarrow H_3O^+ + F^ K = 7.55 \times 10^{-4} \otimes 25^{\circ}C$$

$$K = 7.55 \times 10^{-4} @ 25^{\circ}C$$

2.
$$N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$$

$$K = 3.5 \times 10^8 \ \text{@ } 25^{\circ}C$$

3. $Hb + O_2(g) \Leftrightarrow HbO_2$

Exam II Score