IA V										VIIIA							
н	The Periodic Table										He						
1	11.6		10				Jui	• •	un			111.6	1110	12.0	122.0	1.00.0	2
1.01	IIA	1										ШA	IVA	VA	VIA	VIIA	4.00
Li	Be											в	С	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12	MARGINE										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

SID	Last	First									
Question 1 5 Points	Draw a Lewis structure for F_2CO in which the central C atom obeys the octet rule, and answer the questions based on your drawing.										
		1. The number of lone pairs on the central C									
		atom:									
		2. The central C atom forms single									
		bonds.									
Question 2 5 Points	Draw a Lewis structure for PO_4^{3-} in which the central P atom obeys the octet rule, and answer the questions based on your drawing.										
		1. The number of lone pairs on this structure									
		is:									
		2. The central P atom forms double									
		bonds.									
Question 3 9 Points	Draw Lewis Structures for xenon tric (Include any resonance structures if XeO 3	oxide and sulfur dioxide. applicable) SO2									
Question 4	Draw a Lewis diagram for CH_3CH_2COC	DH . Use your diagram to answer the following									
8 Points	questions. Count double bonds as 2	bonds.									
		b. The number of O-H bonds =									
		c The number of C-C bonds =									
		d The number of C-O bonds =									
		e. Total number of unshared pairs -									
		e. Total humber of unshared pairs -									
Question 5 8 Points	What is the name of the compound with the formula:	What is the formula for:									
	1. PCI ₅	3. Tetraphosphorus decaoxide									
	2. O ₂ F ₂	4. Carbon tetrabromide									

In one sentence, justify your choice.

Question 11 6 Points	Write the equilibrium constant expression , K_c , for the following reactions:										
	a) 2 H ₂ (g) + S ₂ (g)	⇔ 2 H₂S(g)	K _c =								
	b) 2 SO3(s)	⇔ 2 SO₂(g) + O₂(g)	K _c =								
	c) NO ₂ ⁻ (aq) + H ₂ O(I)	$\Leftrightarrow HNO_2(aq) + OH^{-}(aq)$	K _c =								
Question 12 3 Points	HNO₂(aq) + HS⁻(aq) ⇔ NO₂ Assuming that you start wi H₂S is initially present, whi	2 ⁻ (aq) + H2 S(aq) th equal concentrations of ch of the following best c	K = 4.50×10^3 at 298K. f HNO ₂ and HS ⁻ , and that no NO ₂ ⁻ or lescribes the equilibrium system?								
	 Appreciable quantities of all species are present at equilibrium. 										
	The forward reaction is favored at equilibrium.										
	The reverse reaction is favored at equilibrium.										
Question 13 9 Points	Consider the following syst When some Br₂(g) is remov	em at equilibrium at 298 2 NO(g) + Br₂(g) ⇔ 2 ed from the equilibrium s	K: NOBr(g) ystem at constant temperature:								
	The reaction must:	The co	The concentration of NO will:								
	Run in the forward of	direction. \Box	Remain the same.								
	Run in the reverse d	irection. \Box	Increase.								
	Remain the same.		Decrease.								
	The equilibrium constant K □ Remain the same.	will:									
	Increase.										
	Decrease.										
Question 14 6 Points	Consider the following system at equilibrium at 698 K: 2 HI(g) + 2.49 kcal ⇔ H₂(g) + I₂(g)										
	If the temperature on the equilibrium system is suddenly decreased:										
	The concentration of ${f I}_2$ wil	I: The e	The equilibrium constant K will:								
	Remain the same.		Remain the same.								
	Increase.		Increase.								
	Decrease.		Decrease.								

Exam II Score