iA	$1 / 1 / A$																V/IIA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$		The Periodic Table															He 2
1.01												Mi/	IVA	VA	V/A	V/IA	4.00
$\underset{3}{\mathrm{Li}}$	Be 4											B 5	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{gathered} \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											AI 13	Si 14	P	S	Cl 17	
22.99	24.31	\ldots	IVB	VB	V/B	V/IIS	V/igs	V/INB	V/IM	18	$1 / 8$	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

\square
\qquad Firs \dagger

Question 1 A chemist needs 2.12 g of a liquid compound with a density of $0.784 \mathrm{~g} / \mathrm{cm}^{3}$. What 4 Points volume of the compound is required?
\square
Question 2 How many significant figures are in the following number: 0.00546 3 Points

Question 3 Carry out the following calculation and report the answer in the correct number of 4 Points significant figures.

$$
16.8(23.51-2.3)
$$

Question 4 Give the correct formula for the following polyatomic ions:

1. Cyanide \qquad
2. Nitrite
3. Nitride \qquad 4. Nitrate

Question 5 How many protons, neutrons and electrons are there in ${ }^{81} \mathrm{Br}^{-}$?
\square Protons \square Neutrons

Question 6 Chlorine has two isotopes, ${ }^{35} \mathrm{Cl}$ and ${ }^{37} \mathrm{Cl}$. What would you estimate the relative abundance
3 Points
of ${ }^{37} \mathrm{Cl}$ to be?

1. 100%
2. 50% [Circle the best estimate]
3. 25%
4. 0%

Question 7 Copper has two naturally occurring isomers:

4 Points
Exact Mass (amu) Abundance

${ }^{63}{ }_{29} \mathrm{Cu}$	62.9296	69.17
${ }^{65}{ }_{29} \mathrm{Cu}$	64.9278	30.83

What is the average atomic mass of copper? Give answer to 4 decimal places

Question 8 The following questions pertain to the periodic table given at the front of this exam: 8 Points
\square
a. Element 29 belongs to which group?
b. Element 29 is one of the \qquad metals.
c. The symbol for the lightest Halogen is?
d. How many diatomic elements are in period 2.

Question 9

1. Name the compound with the formula AIPO $_{4}$?
2. Name the compound with the formula $\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{2}$?
3. What is the formula for magnesium carbonate?
4. What is the formula for iron(II) hydroxide?

Question 10
a. How many moles of lead(II) chloride, PbCl_{2}, are present in a sample that contains 4.96 moles of chloride ions?
\square moles PbCl_{2}
b. How many grams of lead(II) chloride are present in 2.36 moles of PbCl_{2} ?
\square grams PbCl_{2}

Question 11 How many grams on $\mathbf{M g}^{2+}$ are present in 2.86 moles of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$?

Question 12 Balance the following chemical equations using the smallest possible integer coefficients. 6 Points

1. \qquad $\mathrm{Fe}_{2} \mathrm{O}_{3}+$ \qquad $C(s)$ $=$ \qquad $\mathrm{Fe}(\mathrm{s})+$ \qquad $\mathrm{CO}_{2}(\mathrm{~g})$
2. \qquad $\mathrm{NaI}(s)$
$=$ \qquad $\mathrm{NaCl}(\mathrm{s})+$ \qquad $I_{2}(s)$
3. Hydrogen bromide (HBr) undergoes decomposition to produce hydrogen gas and liquid bromine.

Question 13 Label the following orbital drawings as s, p,d or f .

Question 14 10 Points

1. Write the complete electronic configuration for nitrogen?
2. Write the noble gas configuration for cobalt, (Co)?
3. The element with an electron configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$ \qquad
4. Bromine, $[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{5}$, has how many valence electrons?
5. The element in period 6 that has the Lewis diagram, X :

Question 15

1. $\mathrm{Br}, \mathrm{K}, \mathrm{Ca}$ or Se . The one with the largest atomic radius:

6 Points
2. $\mathrm{I}, \mathrm{At}, \mathrm{Br}$ or Cl . The one with the smallest ionization energy:
3. $\mathrm{Sr}, \mathrm{Ca}, \mathrm{Ba}$ or Mg . The most electronegative one:

Question 16 From the Lewis structures of the species given, pick all of those in which the central 6 Points atom obeys the octet rule.

Question 17 To answer the questions, interpret the following Lewis diagram for $\mathrm{NO}_{2}{ }^{-}$.
6 Points

With respect to the central nitrogen atom:

1. The number of lone pairs = \qquad
2. The number of single bonds $=$ \qquad
3. The number of double bonds $=$ \qquad
