IA U									VIIIA								
н	The Periodic Table									He							
1										2							
1.01	пя	1										шн	IVA	VA	VIA	VIIA	4.00
LI	Be											в	C	N	0		Ne
3	4											5	6	1101	8	9	10
6.94	9.01	2										10.81	12.01	14.01	16.00	19.00	20.16
Na	Mg											AI	SI	P	S	CI	Ar
11	12	un	4.45	110	1.00	LUID	1.000	1.000	1.000	10		13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB	ШВ	26.98	28.09	30.97	32.07	35.45	39.95
ĸ	Ca	Sc	TI	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				ana ang ang ang ang ang ang ang ang ang				oon ana				1991 Ser - C.G. 20					-
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful Formulae and Constants:

$$pH = pK_a + \log_{10}\{[A^-]/[HA]\}$$

$$K_w = 1 \times 10^{-14} @ 25^{\circ}C$$

		First								
510										
Question 1 5 Points	Consider the following system at equilibrium at 298 K: 2 $CH_2Cl_2(g) \Leftrightarrow CH_4(g) + CCl_4(g)$ When some CCl_4(g) is removed from the equilibrium system at constant temperature:									
	(No partial credit) The presetion must:	and The concentration of CH, will:								
	 Run in the forward direction. 	\square Remain the same.								
	Run in the reverse direction.	 Increase. 								
	Remain the same.	 Decrease. 								
Question 2 5 Points	Consider the following system at equilibrium at 298 K: N2(g) + O2(g) + 43.2 kcal ⇔ 2 NO(g) If the temperature is suddenly decreased : (No partial credit)									
	The reaction must: □ Run in the forward direction.	and The concentration of O₂ will: □ Remain the same.								
	Run in the reverse direction.	🗅 Increase.								
	 Remain the same. 	 Decrease. 								
Question 3 5 Points	Consider the following system at equilibri PCI ₅ (g) ⇔ PCI ₃ (g) + CI ₂ (g) If the pressure is suddenly decreased: (No partial credit)	ium at 500 K:								
	The reaction must:	and The concentration of Cl_2 will:								
	Run in the forward direction.	 Remain the same. 								
	Run in the reverse direction.	 Increase. 								
	Remain the same.	 Decrease. 								
Question 4 10 Points	Consider the following system at equilibrium at 1150 K: 2 SO ₃ (q) \Leftrightarrow 2 SO ₂ (q) + O ₂ (q) + 47.3 kcal									
	The production of SO ₂ (g) is favored by Indicate True (T) or False (F) for each of the following:									
	a. Decreasing the temperature.	d. Adding SO 3								
	b. Decreasing the pressure.	e. Adding O ₂ .								
	c. Increasing the volume.	_								

Question 5	a. HCOOH			1.	Strong Acid						
8 Points	b. NH ₃			2.	Weak Acid						
	с. С₅Н 11 N			3.	Strong Base						
	d. HBr			4.	Weak Base						
Question 6 6 Points	Circle the appropriate answers			The acid in a 0.10	with the greatest [H M aqueous solution is	3 0⁺] 3: A	В	с			
	Acid	Ka	2	The ecid	with the cmellest nK	a [.] A	D	C			
	Α	7.9×10 ⁻⁷	۷.	The acta	with the smallest pro	1. A	D	C			
	B C	1.8×10 ⁻³ 4.2×10 ⁻⁷	3.	The acid in a 0.10	with the smallest pO M aqueous solution is	H 3: A	В	с			
Question 7 6 Points	The pKa for HCN	I is 9 . 3 9 while the K	a for	HCIO is 3	.5×10 ⁻⁸ .						
	a. What	is the pKa for HClO?	>								
	b. Which	is the stronger acid	?								
Question 8 9 Points	The hydroxide concentration in an aqueous solution is 4.5x10⁻² M @ 25°C										
	a. The hydronium ion concentration is:M										
	b. The pH of	this solution is:									
	c. The pOH	is:									
Question 9 12 Points	In the following net ionic equation, identify each reactant as either a Bronsted-Lowry acid or a Bronsted-Lowry base . $C_5H_5NH^+ + OH^- \Leftrightarrow C_5H_5N(aq) + H_2O(I)$										
	a. C₅H₅NH ⁺	Bronsted	l- Low	ry	<u> </u>						
	b. OH ⁻	Bronsted	- Low	ry							
	Give the formula for: c. Conjugate acid of HPO4 ²⁻										
	d. Conjugate	base of HPO42-	-								
Question 10 4 Points	A buffer solution 1.29, what is the You must show work to	n is 0.225 M in H ₂ C ₂ C e pH of this buffer s obtain credit.	O₄ and colutic	d 0.499 M on?	∖ in NaHC₂O₄ . If pKa	for H 2	.C₂O₄	is			

Question 11 A small amount of **strong acid** is added to a **buffer** made from HNO₂ and NaNO₂. What ^{8 Points} changes if any will occur to the solution?

- Circle the appropriate answer

α.	рН	Increase	Decrease	Unchanged
b.	[NO ₂ ⁻]	Increase	Decrease	Unchanged
c.	[HNO₂]	Increase	Decrease	Unchanged
d.	[OH ⁻]	Increase	Decrease	Unchanged

Question 12 Calcium hydroxide is standardized by titration with 0.320 M solution of nitric acid. If ^{6 Points} 38.5 mL of base are required to neutralize 23.4 mL of acid, what is the molarity of the calcium hydroxide solution?

Question 13 How many grams of solid barium hydroxide are needed to exactly neutralize 25.4 mL of ^{5 Points} a 1.49 M hydrochloric acid solution? Assume that the volume remains constant. Question 14 How many grams of chloric acid will be formed upon the complete reaction of 29.0 grams 6 Points of water with excess chlorine gas?

Chlorine (g) + water (l) = hydrochloric acid (aq) + chloric acid (HClO₃)

_____ g

g

Question 15 What mass of iron in grams would produce 27.7 L of hydrogen gas (P = 1 atm, T = 25°C) ^{5 Points} when it reacts completely with excess hydrochloric acid? Iron (s) + hydrochloric acid (aq) = iron(II) chloride (aq) + hydrogen (g)

R = 0.08205 L.atm.K⁻¹.mol⁻¹

