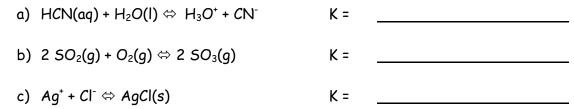

/A H 1	The Periodic Table										VIIIA He 2						
1.01	IIA	1										IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											в	С	N	0	F	Ne
3 6.94	4 9.01											5 10.81	6 12.01	7 14.01	8 16.00	9 19.00	10 20.18
		2															
Na 11	Mg 12											AI 13	Si 14	P 15	S 16	CI 17	Ar 18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB.	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85			192.22	195.08		200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)	J		
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12		144.24		150.36		2		2			168.93		
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

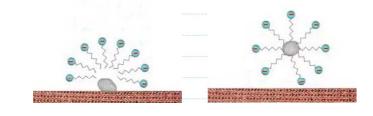
SID	Last	First									
Question 1 8 Points	To answer the questions, interpret the following Lewis diagram for NO2 ⁻ . With respect to the central nitrogen atom : a) The number of lone pair										
		b) The number of single bond									
	c) The number of do	uble bond									
	d) The number of re	sonance structures									
Question 2 16 Points	Draw a Lewis structure for each of the fo rule .	llowing where the central atom obeys the octet									
	ClO ₄ ⁻	HCN									
	HFCO	СО									
Question 3	Draw a Lewis structure (<i>on scrap paper pr</i>	ovided) for CH3COOCH3. Use vour diaoram to									
8 Points	Draw a Lewis structure (<i>on scrap paper provided</i>) for CH3COOCH 3. Use your diagram to answer the following questions.										
	a) The number of C-H bonds =										
	b) The number of C-O single bonds =										
	c) The number of C-C single bonds =										
	a) The number of C-O double bonds =										
Question 4 8 Points	CH₃COO ⁻ has resonance structures - draw	them.									
Question 5 8 Points	What is the name of the compound with	What is the formula for:									
0 1 0/113	the formula: a) N₂O₄	a) Sulfur trioxide									
	b) PCI 5	b) Carbon tetrachloride									


Question 9 $HClO(aq) + CN^{-} \Leftrightarrow ClO^{-} + HCN(aq)$ K = 87.5 at 298K.

5 Points

Assuming that you start with equal concentrations of HCIO and CN⁻, and that no CIO⁻ or HCN is initially present, which of the following best describes the equilibrium system?

- a) The forward reaction is favored at equilibrium.
- b) Appreciable quantities of all species are present at equilibrium.
- c) The reverse reaction is favored at equilibrium.


Question 10 Write the **equilibrium constant expression**, K, for the following reactions: 9 Points

Question 11 Which of the following molecules has the smallest bond angle? 5 Points

Question 12 In our discussion on the consequences of molecular polarity, the depiction below was used ^{5 Points} to discuss:

- a) Fabric softeners
- b) Micelle actions
- c) Membranes
- d) The dissolution process

- e) Detergents
- f) EDTA use in salad dressings
- g) Lead poisoning
- h) Chelating therapy.

Exam II Score