IA																	VIIIA
H		The Periodic Table						He									
1.01	IIA		>5					•		. •		IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be	l ²										В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	l,										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12	Market										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB.	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	L C	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				WHEN THE	100	10000		50%.	2000	11.00		100 CO - 170	75 (12 C) V2 (12 C)	2000			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

97

(251) 252.08 257.10

Some Useful Formulae and Constants:

$$pH = pK_{\alpha} + log_{10}\{[A^{-}]/[HA]\}$$

$$K_w = 1 \times 10^{-14} @ 25^{\circ}C$$

SID	Last	First									
Question 1 8 Points	Consider the following system at equilibrium at 298 K: $N_2(g) + O_2(g) + 43.2 \text{ kcal} \Leftrightarrow 2 \text{ NO}(g)$ The production of NO(g) is favored by:										
	Indicate True or False for each of the following: Increasing the temperature.	□ Adding NO.									
	□ Increasing the volume	□ Removing O ₂ .									
Question 2 8 Points	Consider the following system at equilibrium at 346 K: $CO(g) + Br_2(g) \Leftrightarrow COBr_2(g) + 18.2 \text{ kcal}$ The production of $COBr_2(g)$ is favored by:										
	Indicate True or False for each of the following: Decreasing the temperature.	□ Adding Br ₂ .									
	Decreasing the pressure.	□ Removing CoBr ₂ .									
Question 3 4 Points	Write a net ionic equation to show that hydrofluoric acid, HF, behaves as an acid in water.										
	+ H ₂ O(l) \Leftrightarrow	+									
Question 4 8 Points	Assign each species on the left to a category on the right.										
3 / 3	a. C ₂H₅NH₂	1. Strong Acid									
	b. HF	2. Weak Acid									
	c. NH ₃	3. Strong Base									
	d. Ba(OH) 2	4. Weak Base									
Question 5 6 Points	The hydroxide concentration in an aqueous solution is 4.47×10^{-4} M @ $25^{\circ}C$										
	a. The hydronium ion concentration is:	M									
	b. The pH of this solution is:										
	c. The pOH is:										
Question 6 6 Points	Arrange the following solutions in order of 1 = least acidic ; 3 = most acidic	increasing acidity:									
	1. $[H_3O^+] = 1 \times 10^{-6} M$										
	2. pOH = 3										
	3. [OH ⁻] = 1×10 ⁻⁹ M										

Question 7 8 Points	In the following net ionic equation, identify each reactant as either a Bronsted-Lowry acid or a Bronsted-Lowry base: $CH_3CO_2H(aq) + H_2O(l) \Leftrightarrow CH_3CO_2^- + H_3O^+$										
		d-Lowry acid:	BLA		Bronsted-Lowry base: BLB						
	1.	CH₃CO ₂ H	_		3.	CH ₃ CO ₂ -					
	2.	H ₂ O	_		4.	H ₃ O ⁺					
Question 8	Give the formula for: 1. The conjugate acid of $H_2PO_4^-$ 2. The conjugate base of $H_2PO_4^-$										
6 Points											
Question 9 4 Points	Which of the following aqueous solutions are buffer solutions?										
		0.19 M KO	H + 0.25 M k	(Cl		17 M CH₃COOH + 0.17 M CH₃COOK					
		0.34 M NF	14Br + 0.38 <i>N</i>	M NH ₃		0.22 M HI + 0.19 M NaI					
	\square 0.34 M Ba(ClO ₄) ₂ + 0.23 M Ba(NO ₃) ₂										
Question 10	A buffer solution that is $0.354~M$ in HNO $_2$ and $0.354~M$ in NaNO $_2$ has a pH of 3.35 .										
	Addit H₃O⁺?		of the follo	owing would in	crease t	he capacity of the buffer for added					
		NaNO ₂				both HNO2 and NaNO2					
		pure wate	r		None of the these						
		HNO ₂									
Question 11 5 Points			is 0.422 M this buffer		273 M ii	n KCN . If Ka for HCN is 4.0×10 ⁻¹⁰ ,					
						pH =					
Question 12 8 Points	A small amount of strong base is added to a buffer made from HNO_2 and $NaNO_2$. What changes if any will occur to the solution?										
						- Circle the appropriate answer					
	a.	рН	Increase	D	ecrease	Unchanged					
	b.	[NO ₂ -]	Increase	. D	ecrease	Unchanged					
	c.	[HNO ₂]	Increase	D	ecrease	Unchanged					
	d.	[OH-]	Increase	D	ecrease	Unchanged					

Question 13 6 Points	How many grams of copper(II) chloride are there in 48.9 mL of an aqueous solution that has a concentration of 0.196 M? Must show work
	9
Question 14 6 Points	You wish to make a 0.233 M nitric acid solution from a stock solution of 6.00 M nitric acid. How much concentrated acid must you add to obtain a total volume of 75.0 mL of the dilute solution? Must show work
	mL
Question 15 5 Points	According to the following reaction, how many moles of bromine trifluoride are necessary to form 0.162 moles fluorine gas? bromine trifluoride (g) = bromine (g) + fluorine (g) Must show work and include a balanced chemical equation.

mol

Question 16 8 Points	An aqueous solution of barium hydroxide is standardized by titration with a 0.264 M solution of nitric acid .
	If 23.6 mL of base are required to neutralize 23.3 mL of the acid, what is the molarity of the barium hydroxide solution? Must show work and include a balanced chemical equation.
	M
	Exam III Score