| iA | $1 / 1 / A$ | The Periodic Table |  |  |  |  |  |  |  |  |  |  |  |  |  |  | IIIIA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | He <br> 2 <br>  |
| 1.01 |  |  |  |  |  |  |  |  |  |  |  | IIIA | IVA | VA | V/A | V/IA | 4.00 |
| $\mathrm{Li}_{3}$ | Be 4 |  |  |  |  |  |  |  |  |  |  | B | C | N 7 | 0 8 | F | Ne 10 |
| 6.94 | 9.01 |  |  |  |  |  |  |  |  |  |  | 10.81 | 12.01 | 14.01 | 16.00 | 19.00 | 20.18 |
| $\begin{aligned} & \mathrm{Na} \\ & 11 \end{aligned}$ | $\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | AI 13 | Si | P |  | $\mathrm{Cl}_{17}$ |  |
| 22.99 | 24.31 | IIM | IVB | VB | V/B | V/IB | V/IM | V/İB | V/IM | 18 | /18 | 26.98 | 28.09 | 30.97 | 32.07 | 35.45 | 39.95 |
| K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
| 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |
| 39.10 | 40.08 | 44.96 | 47.88 | 50.94 | 52.00 | 54.94 | 55.85 | 58.93 | 58.69 | 63.55 | 65.39 | 69.72 | 72.61 | 74.92 | 78.96 | 79.90 | 83.80 |
| Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | 1 | Xe |
| 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 |
| 85.47 | 87.62 | 88.91 | 91.22 | 92.91 | 95.94 | (97.9) | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60 | 126.90 | 131.29 |
| Cs | Ba | La | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | TI | Pb | Bi | Po | At | Rn |
| 55 | 56 | 57 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 |
| 132.91 | 137.33 | 138.91 | 178.49 | 180.95 | 183.85 | 186.21 | 190.2 | 192.22 | 195.08 | 197.97 | 200.59 | 204.38 | 207.2 | 208.98 | (209) | (210) | (222) |
| Fr | Ra | Ac | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Uub | Uut | Uuq | Uup |  |  |  |
| 87 | 88 | 89 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 |  |  |  |
| 223.02 | 226.03 | 227.03 | (261) | (262) | 263) | (262) | (265) | (266) | (271) | (272) | (285) | (284) | (289) | (288) |  |  |  |


| Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 |
| $\mathbf{1 4 0 . 1 2}$ | $\mathbf{1 4 0 . 9 1}$ | $\mathbf{1 4 4 . 2 4}$ | $(145)$ | 150.36 | 152.97 | $\mathbf{1 5 7 . 2 5}$ | $\mathbf{1 5 8 . 9 3}$ | 162.50 | 164.93 | $\mathbf{1 6 7 . 2 6}$ | $\mathbf{1 6 8 . 9 3}$ | 173.04 | 174.97 |
| Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| 232.04 | 231.04 | 238.03 | 237.05 | $(240)$ | 243.06 | $(247)$ | $(248)$ | $(251)$ | 252.08 | 257.10 | $(257)$ | 259.10 | 262.11 |

## Some Useful Formulae and Constants:

$\mathrm{pH}=\mathrm{pK} \mathrm{a}_{\mathrm{a}}+\log _{10}\{[$ Conjugate base $] /[$ Conjugate acid] $\}$

$$
K_{w}=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}
$$

$\square$
$\qquad$ Firs $\dagger$

Question 1 Consider the following system at equilibrium at 500 K :

$$
\mathrm{PCl}_{5}(\mathrm{~g})+21.0 \mathrm{kcal} \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

The production of $\mathrm{PCl}_{3}(\mathrm{~g})$ is favored by:
Indicate True or False for each of the following:

- Increasing the temperature. $\qquad$ - Decreasing the volume.
- Decreasing the pressure. $\qquad$ - Adding $\mathrm{PCl}_{5}$.
- Removing $\mathrm{Cl}_{2}$.

Question 2 Consider the following system at equilibrium at 573 K :
4 Points
$2 \mathrm{NOCl}(\mathrm{g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
If the Volume of the equilibrium system is suddenly decreased at constant temperature:

The reaction must:

- Run in the forward direction.
- Run in the reverse direction.
- Remain the same

The number of moles of $\mathrm{Cl}_{2}$ will:

- Increase.
- Decrease.
- Remain the same

Question 3 Write a net ionic equation to show that ammonia behaves as a base in water.

4 Points
$\qquad$ $+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \Leftrightarrow$ $\qquad$ $+$ $\qquad$
Question 4 Assign each species on the left to a category on the right.
8 Points

- NaOH
- $\mathrm{HNO}_{2}$
- HCN
a $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$
$\qquad$ 1. Strong Acid
$\qquad$ 2. Weak Acid

3. Strong Base
4. Weak Base

Question 5 An aqueous solution has a hydroxide ion concentration of $1.0 \times 10^{-5} \mathrm{M}$.

## 6 Points

- What is the hydronium ion concentration in this solution? $\qquad$
- Is this solution acidic, basic or neutral?

Question 6 The pH of an aqueous solution at $25^{\circ} \mathrm{C}$ was found to be 7.30 .
9 Points
a. The hydronium ion concentration is: $M$
b. The hydroxide ion concentration is: $\qquad$ M
c. The pOH is:

Question 7 Arrange the following solutions in order of decreasing acidity:
6 Points 1 = most acidic ; 3 = least acidic

1. $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1 \times 10^{-10} \mathrm{M}$
2. $\mathrm{pOH}=7$
3. $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-13} \mathrm{M}$
$\qquad$
$\qquad$
Question 8 In the following net ionic equation, identify each reactant as either a Bronsted-Lowry 6 Points acid or a Bronsted-Lowry base:

$$
\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Leftrightarrow\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{NH}^{+}+\mathrm{OH}^{-}
$$

Bronsted-Lowry acid: BLA Bronsted-Lowry base: BLB

- $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~N}$
$\qquad$
- $\mathrm{H}_{2} \mathrm{O}$

Question 9 Give the formula for:
6 Points

1. The conjugate acid of $\mathrm{HCO}_{3}^{-}$
2. The conjugate base of $\mathrm{HCO}_{3}{ }^{-}$

Question 10 Which of the following aqueous solutions are buffer solutions?
6 Points

- 0.24 M HI + 0.18 M NaI
- $0.34 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}+0.39 \mathrm{M} \mathrm{NaNO}_{3}$
- $0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+0.18 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOK}$
- $0.10 \mathrm{M} \mathrm{HCl}+0.21 \mathrm{M} \mathrm{NaF}$
- $0.27 \mathrm{M} \mathrm{NH}_{4} \mathrm{Br}+0.31 \mathrm{M} \mathrm{NH}_{3}$

Question 11 A buffer solution is 0.622 M in HCN and 0.373 M in KCN . If Ka for HCN is $4.0 \times 10^{-10}$,
4 Points what is the pH of this buffer solution?
Must show work

Question 12 A 1 L buffer solution solution contains 0.25 mol of NaCN and 0.15 mol of HCN .
8 Points (Chose a number from the list on the right that best describes what happens upon - )

- Addition of 0.05 mol of HCl will cause the $[\mathrm{HCN}]$ to __ 1. Increase significantly
- Addition of 0.05 mol of HCl will cause the pOH to 2. Increase

3. Increase slightly

- Addition of 0.05 mol of NaOH will cause the $[\mathrm{HCN}]$ to $\qquad$ 4. Decrease significantly
- Addition of 0.2 mol of NaOH will cause the pH to

5. Decrease
6. Decrease slightly

Question 13 Write a balanced nuclear equation for the following:
8 Points

- ${ }^{238}{ }_{92} \mathrm{U}$ undergoing alpha emission:

$=$ $\qquad$
- ${ }^{137}{ }_{55}$ Cs undergoing beta decay:
- ${ }^{10} C$ undergoing positron emission:
- ${ }^{51}{ }_{24} \mathrm{Cr}$ undergoing electron capture:
$\qquad$
$=$
$\qquad$ $=$ $\qquad$

Question 14 You need to make an aqueous solution of 0.121 M ammonium carbonate for an experiment in lab, using a 125 mL volumetric flask. How much solid ammonium carbonate should you add?
Must show work

Question 15 How many moles of hydrochloric acid will be formed upon the complete reaction of 1.5 moles of water with excess chlorine gas?

Chlorine (g) + water (I) = hydrochloric acid (aq) + chloric acid ( $\mathrm{HClO}_{3}$ )
Must show work and include a balanced chemical equation.

| Question 16 | How many grams of solid aluminum hydroxide are required to neutralize 15.5 mL of a |
| :---: | :--- |
| 8 Points | 2.65 M solution of perchloric acid. <br> Must show work and include a balanced chemical equation. |

