IA	_																VIIIA
н	The Periodic Table									He							
1										2							
1.01	IIA	1										IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											в	С	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	2										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											A	Si	P	S	CI	Ar
11	12	No.										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	//B	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				valez de N			~o	6042 - 1944 1		19.93 - Circ 		va sz. – as zv					
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful Formulae and Constants:

$$pH = pK_{\alpha} + log_{10}{[Conjugate base]/[Conjugate acid]}$$

 $K_w = 1 \times 10^{-14} @ 25^{\circ}C$

SID	Last	First								
Question 1 5 Points	Consider the following system at equilibrium at 500 K: PCl₅(g) + 21.0 kcal ⇔ PCl₃(g) + Cl₂(g) The production of PCl₃(g) is favored by:									
	Indicate True or False for each of the following: Increasing the temperature. 	Decreasing the volume.								
	 Decreasing the pressure. 	Adding PCl₅.								
		Removing Cl ₂ .								
Question 2 4 Points	Consider the following system at equilibrium at 573 K: 2 NOCl(g) ⇔ 2 NO(g) + Cl₂(g)									
	If the Volume of the equilibrium system is suddenly decreased at constant temperature:									
	The reaction must:	The number of moles of Cl 2 will:								
	Run in the forward direction.	 Increase. 								
	Run in the reverse direction.	 Decrease. 								
	Remain the same	Remain the same								
Question 3 4 Points	Write a net ionic equation to show that ammonia behaves as a base in water .									
	+ H₂O(I) ⇔	+								
Question 4	Assign each species on the left to a category on the right .									
	□ NaOH	1. Strong Acid								
	□ HNO₂	2. Weak Acid								
	□ HCN	3. Strong Base								
	□ C ₉ H ₇ N	4. Weak Base								
Question 5	An aqueous solution has a hydroxide ion concentration of 1.0×10^{-5} M.									
////	What is the hydronium ion concer	itration in this solution?M								
	Is this solution acidic, basic or neutral?									

Question 6 9 Points	The pH of an aqueous solution at 25 $^\circ$ C was found to be 7.30.								
	a. The hydronium ion concentration is:	M							
	b. The hydroxide ion concentration is:	M							
	c. The pOH is:								
Question 7 6 Points	Arrange the following solutions in order of decreasing acidity: 1 = most acidic ; 3 = least acidic								
	1. $[H_3O^+] = 1 \times 10^{-10} M$								
	2. pOH = 7								
	3. [OH ⁻] = 1×10 ⁻¹³ M								
Question 8 6 Points	In the following net ionic equation , identify each reactant as either a Bronsted-Lowry acid or a Bronsted-Lowry base : $(C_2H_5)_3N(aq) + H_2O(I) \Leftrightarrow (C_2H_5)_3NH^+ + OH^-$ Bronsted-Lowry acid: BLA Bronsted-Lowry base: BLB								
	□ (C₂H₅)₃N	□ H₂O							
Question 9 6 Points	Give the formula for: 1. The conjugate acid of H	1CO3 ⁻							
	2. The conjugate base of l	HCO3 ⁻							
Question 10	Which of the following aqueous solutions are buffer solutions?								
	0.24 M HI + 0.18 M NaI	0.34 M NH ₄ NO ₃ + 0.39 M NaNO ₃							
	□ 0.10 M CH ₃ COOH + 0.18 M CH ₃ COOK	0.10 M HCl + 0.21 M NaF							
	• 0.27 M NH ₄ Br + 0.31 M NH ₃								
Question 11 4 Points	A buffer solution is 0.622 M in HCN and 0.3 what is the pH of this buffer solution?	873 M in KCN . If Ka for HCN is 4.0x10 ⁻¹⁰ ,							

Must show work

pH =

Question 12 A 1L buffer solution solution contains 0.25 mol of NaCN and 0.15 mol of HCN. ^{8 Points} (Chose a number from the list on the right that best describes what happens upon -)

- Addition of 0.05 mol of HCl will cause the [HCN] to _____ 1. Increase significantly
 - Addition of 0.05 mol of HCl will cause the pOH to
 2. Increase
 3. Increase slightly
- Addition of 0.05 mol of NaOH will cause the [HCN] to _____ 4. Decrease significantly
- Addition of 0.2 mol of NaOH will cause the pH to
 5. Decrease
 6. Decrease slightly

Question 13 Write a balanced nuclear equation for the following: 8 Points

- ²³⁸₉₂U undergoing alpha emission:
 ¹³⁷₅₅Cs undergoing beta decay:
 ¹⁰C undergoing positron emission:
 ⁵¹₂₄Cr undergoing electron capture:
- Question 14 You need to make an aqueous solution of **0.121 M ammonium carbonate** for an experiment ^{8 Points} in lab, using a **125** mL volumetric flask. How much solid **ammonium carbonate** should you add? Must show work

g

Question 15 How many moles of hydrochloric acid will be formed upon the complete reaction of 1.5 ^{4 Points} moles of water with excess chlorine gas? Chlorine (g) + water (l) = hydrochloric acid (aq) + chloric acid (HClO₃)

Must show work and include a balanced chemical equation.

mol

Question 16How many grams of solid aluminum hydroxide are required to neutralize 15.5 mL of a8 Points2.65 M solution of perchloric acid.
Must show work and include a balanced chemical equation.

g

Exam III Score	