IA																	VIIIA
Н		The Periodic Table												He			
1	100000													2			
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12	William R										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB.	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	[[]	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	500		
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
191			2722	957 EV	20.33	1000	200	2004	760 160	3.03	37.25	water of		2500			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
				100000	337	100		110000000000000000000000000000000000000	ACC. 100	4	1	0.00					

62

150.36

94

63

152.97

Am

95

(240) 243.06

58

Th

59

140.12 140.91

60

144.24

U

92

232.04 231.04 238.03 237.05

61

(145)

Np

93

65

158.93

Bk

97

(248)

66

Cf

98

64

157.25

Cm

96

(247)

67

162.50 164.93 167.26

99

(251) 252.08 257.10

68

Fm

100

69

168.93

Md

101

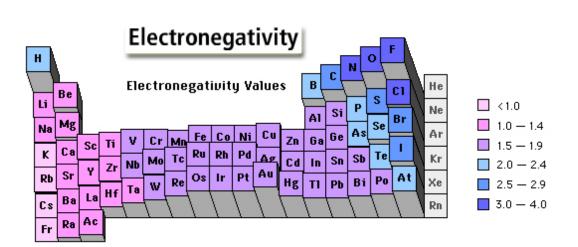
(257)

70

173.04

No

102


259.10 262.11

71

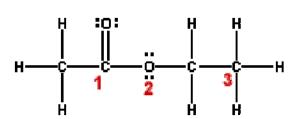
174.97

Lr

103

SID	Last		First					
Question 1 8 Points	To answer the questions, interpret a) The numb	ng Lewis diagram for So pair on central atom	O ₂					
	b) The numl	b) The number of single bond						
	c) The number	c) The number of double bond						
	d) The numb	d) The number of equivalent Lewis structures						
Question 2 8 Points	Draw a Lewis structure for each of octet rule. CN-	ving where the central atom obeys the						
	CIO ₃ -		NH₃					
Question 3 6 Points	On the rough work paper provided - draw a Lewis structure for CO_2 in which the central C atom obeys the octet rule, and answer the questions on the right based on your drawing.	b) The central C atom forms single bonds.						
Question 4 8 Points	Draw a Lewis structure for each of CH₃OCH₂CH₃	[:] the followi	ng organic molecules. HCOOH					
	CH₃CONH₂		C₃H ₆					

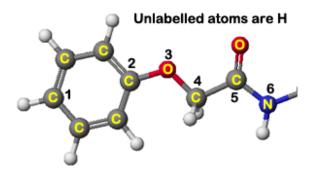
Question 6 8 Points


What is the **name** of the compound with the formula:

- a) NF₃
- b) **P₄O₁₀**

What is the **formula** for:

- a) sulfur hexafluoride _____
- b) Nitrogen monoxide


Question 7 6 Points

What is the bond angle about:

- a) 1: _____
- b) **2**:
- c) **3**:

Question 8 6 Points

What is the **bond angle** about the following atoms?

- C2 ____
- O3 _____
- N6 ____

Question 9 4 Points

$$HNO_2(aq) + OH^-(aq) \Leftrightarrow NO_2^-(aq) + H_2O(1)$$

Assuming you start with equal concentrations of HNO_2 and OH^- , and no NO_2^- is initially present, circle those of the following that best describes the equilibrium system?

- a) The forward reaction is favored at equilibrium.
- b) Appreciable quantities of all species are present at equilibrium.
- c) The reverse reaction is favored at equilibrium.
- d) Very little **OH**⁻ will be present at equilibrium.
- e) The concentration of NO_2^- will be approximately equal to the HNO_2 concentration at equilibrium.

Question	10
8 Points	

н—ё—н

C

A

The following questions relate to the Lewis Structures depicted above

- a) The molecule with the smallest bond angle:
- b) The molecular geometry of B:
- c) The Electron Pair Geometry of C:
- d) The molecule(s) that is(are) expected to be polar:

Question 11 6 Points

The electron-pair geometry around the N atom in NOCI? ______ - There is/are _____ lone pair(s) around the central atom, so the molecular geometry of the NOCI molecule is predicted to be _____.

Question 12 4 Points Write the equilibrium constant expression, K, for the following reactions:

- a) $2 \text{ NOBr}(g) \Leftrightarrow 2 \text{ NO}(g) + \text{Br}_2(g)$
- K = ____
- b) $HCN(aq) + H_2O(1) \Leftrightarrow H_3O^+(aq) + CN^-(aq)$ K =

Question 13
6 Points

Consider the following system at equilibrium at 698 K:

$$2 \text{ HI}(g) \Leftrightarrow H_2(g) + I_2(g)$$

When some $I_2(g)$ is removed from the equilibrium system at constant temperature:

The reaction must:

The concentration of H_2 will:

- a) Run in the forward direction.
- a) Increase

b) Run in the **reverse** direction.

b) Remain the same

c) Remain the same.

c) Decrease

Question 14
6 Points

Consider the following system at equilibrium at 298 K:

$$H_3O^+(aq) + NO_2^-(aq) \Leftrightarrow HNO_2(aq) + H_2O(1)$$

When some \mathbf{OH}^{-} is added to the equilibrium system at constant temperature:

The reaction must:

The concentration of **HNO**₂ will:

- a) Run in the **forward** direction.
- a) Increase

b) Run in the **reverse** direction.

b) Remain the same

c) Remain the same.

c) Decrease

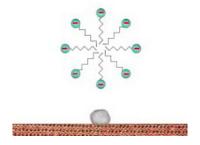
Question 15
6 Points

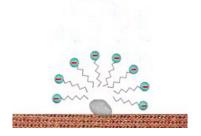
Consider the following system at equilibrium at 573 K:

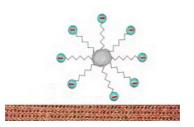
 $2 \text{ NO(g)} + Cl_2(g) \Leftrightarrow 2 \text{ NOCl(g)} + 18.4 \text{ kcal}$

If the temperature of the equilibrium system is suddenly decreased:

The reaction must:


- a) Run in the forward direction.
- b) Run in the **reverse** direction.
- c) Remain the same.


The concentration of Cl_2 will:


- a) Increase
- b) Remain the same
- c) Decrease

Question 16
4 Points

In our discussion on the **consequences of molecular polarity**, the depiction below was used to discuss:

- a) Fabric softeners
- b) Micelle actions
- c) Membranes
- d) The dissolution process

- e) Detergents
- f) EDTA use in salad dressings
- g) Lead poisoning
- h) Chelating therapy.