\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline IA \& \multicolumn{11}{|l|}{\multirow[b]{3}{*}{The Periodic Table}} \& \& \& \& \& \& V/IM \\
\hline $$
\begin{gathered}
\mathrm{H} \\
1
\end{gathered}
$$ \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& He
2

2 \\
\hline 1.01 \& \& \& \& \& \& \& \& \& \& \& \& IIIA \& I/VA \& VA \& V/A \& V/IA \& 4.00 \\

\hline $$
\begin{gathered}
\mathrm{Li} \\
3 \\
6.94
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\mathrm{Be} \\
4 \\
4
\end{gathered}
$$

\] \& \& \& \& \& \& \& \& \& \& \& | B |
| :---: |
| 5 |
| 10.81 | \& | C |
| :---: |
| 6 |
| 12 |
| |
| |
| | \& |c| $\begin{gathered}\text { N } \\ 7 \\ 14.01\end{gathered}$ \& O

8
16.00 \& F
9

19 \& | Ne |
| :---: |
| 10 |
| 20.18 | \\

\hline $$
\begin{array}{|c|}
\hline \mathrm{Na} \\
11 \\
22.99 \\
\hline
\end{array}
$$ \& \[

$$
\begin{array}{|c|}
\hline \mathbf{M g} \\
12 \\
24.31 \\
\hline
\end{array}
$$

\] \& M m \& I/VB \& VB \& V/B \& V/IB \& V/IM \& $1 / / \mathrm{INB}$ \& V/IMB \& 18 \& IIB \& \[

$$
\begin{gathered}
\hline \mathrm{Al} \\
13 \\
26.98 \\
\hline
\end{gathered}
$$

\] \& | Si |
| :---: |
| 14 |
| 28.09 | \& | P |
| :---: |
| 15 |
| 30.97 | \& \[

$$
\begin{gathered}
\hline \mathrm{S} \\
16 \\
32.07 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline \mathrm{Cl} \\
17 \\
35.45 \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\hline \mathrm{Ar} \\
18 \\
39.95
\end{gathered}
$$
\] \\

\hline $$
\begin{aligned}
& \hline \mathrm{K} \\
& 19
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline \mathrm{Ca} \\
& 20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{Sc} \\
& 21
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathrm{Ti} \\
& 22
\end{aligned}
$$

\] \& V \& \[

$$
\begin{aligned}
& \mathrm{Cr} \\
& 24
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{Mn} \\
25
\end{gathered}
$$
\] \& Fe

26 \& $$
\begin{aligned}
& \hline \text { Co } \\
& 27
\end{aligned}
$$ \& Ni

28 \& $$
\begin{aligned}
& \mathrm{Cu} \\
& 29
\end{aligned}
$$ \& \[

\underset{30}{\mathrm{Zn}}

\] \& \[

$$
\begin{gathered}
\hline \text { Ga } \\
31
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{Ge} \\
32
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { As } \\
33
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \hline \mathrm{Se} \\
& 34
\end{aligned}
$$
\] \& \& \\

\hline 39.10 \& 40.08 \& 44.96 \& 47.88 \& 50.94 \& 52.00 \& 54.94 \& 55.85 \& 58.93 \& 58.69 \& 63.55 \& 65.39 \& 69.72 \& 72.61 \& 74.92 \& 78.96 \& 79.90 \& 83.80 \\

\hline $$
\begin{array}{|c}
\hline \mathrm{Rb} \\
37 \\
85.47
\end{array}
$$ \& \[

$$
\begin{gathered}
\mathrm{Sr} \\
38 \\
87.62
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\hline Y \\
39 \\
88.91
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\hline \mathrm{Zr} \\
\mathbf{4 0} \\
91.22
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c}
\hline \mathrm{Nb} \\
41 \\
92.91
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\hline \mathrm{Mo} \\
42 \\
95.94
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c}
\hline \text { Tc } \\
43 \\
(97.9)
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{Ru} \\
\mathbf{4 4} \\
\mathbf{1 0 1 . 0 7}
\end{gathered}
$$

\] \& \[

$$
\begin{array}{c|c}
\hline R h \\
45 \\
102.91
\end{array}
$$
\] \& Pd

46

106.42 \& \begin{tabular}{l}
Ag 47 \\
107.87

 \&

Cd 48 \\
112.41

\end{tabular} \& \[

$$
\begin{array}{|c|}
\hline \text { In } \\
49 \\
14.82
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{Sn} \\
50 \\
118.71
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{Sb} \\
51 \\
121.76
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{Te} \\
52 \\
127.60
\end{gathered}
$$

\] \& \[

$$
\begin{array}{|c|}
\hline 1 \\
53 \\
126.90
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{Xe} \\
54 \\
131.29
\end{gathered}
$$
\] \\

\hline $$
\begin{array}{|c|}
\hline \mathrm{Cs} \\
55 \\
132.91 \\
\hline
\end{array}
$$ \& Ba

56

137.33 \& | La |
| :---: |
| 57 |
| 138.91 | \& \[

$$
\begin{array}{|c|}
\hline \mathrm{Hf} \\
72 \\
178.49
\end{array}
$$
\] \& Ta

73

180.95 \&	W
74	
183.85	\& \[

$$
\begin{array}{|c|}
\hline \operatorname{Re} \\
75 \\
186.21
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\hline \text { Os } \\
76 \\
190.2
\end{gathered}
$$

\] \&	Ir
77	
192.22	\& Pt

78

195.08 \&	Au
79	
197.97	\& \[

$$
\begin{gathered}
\mathrm{Hg} \\
80 \\
200.59
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\mathrm{TI} \\
81 \\
204.38
\end{gathered}
$$
\] \& Pb

82
207.2 \& Bi
83

208.98 \& $$
\begin{array}{|c}
\hline \text { Po } \\
84 \\
(209) \\
\hline
\end{array}
$$ \& At

85
(210) \& Rn
86
(222) \\

\hline | Fr |
| :---: |
| 87 |
| 223.02 | \& Ra

828
226.03 \& $A c$
89

227.03 \& \[
$$
\begin{array}{|c|}
\hline \text { Rf } \\
104 \\
(261) \\
\hline
\end{array}
$$

\] \&	Db
105	
(262)	\& \[

$$
\begin{aligned}
& \hline \mathrm{Sg} \\
& 106 \\
& 263)
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline \text { Bh } \\
107 \\
(262) \\
\hline
\end{array}
$$
\] \& Hs

108

(265) \& \[
$$
\begin{array}{|l|}
\hline \mathrm{Mt} \\
109 \\
(266) \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{gathered}
\hline \text { Ds } \\
110 \\
(271) \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{Rg} \\
& 111 \\
& (272)
\end{aligned}
$$

\] \& \[

$$
\begin{array}{|c}
\hline \text { Uub } \\
112 \\
(285) \\
\hline
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& \text { Uut } \\
& 113 \\
& \text { (284) }
\end{aligned}
$$

\] \& \[

$$
\begin{array}{c|}
\hline \text { Uuq } \\
114 \\
(289)
\end{array}
$$

\] \& \[

$$
\begin{array}{|l|}
\hline \text { Uup } \\
115 \\
(288) \\
\hline
\end{array}
$$
\] \& \& \& \\

\hline
\end{tabular}

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	$\mathbf{1 5 0 . 3 6}$	152.97	157.25	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	168.93	$\mathbf{1 7 3 . 0 4}$	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	$\mathbf{1 0 2}$	$\mathbf{1 0 3}$
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful (maybe) Constants:

a) $\quad 1 \mathrm{amu}=1.661 \times 10^{-24} \mathrm{~g}$

Question 1 Report the follow operations to the correct number of significant figures?
6 Points
a) $36.456+74.2$
b) $18.4 \times\left(1.000 \times 10^{-3}\right)$
c) $2.01(23.56-2.3)$

Question 2 A piece of copper has a volume of 740L. What is the mass of the same in units of 4 Points grams.

$1 \mathrm{~cm}^{3} \mathrm{Cu}=8.8 \mathrm{~g} \mathrm{Cu}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
9.5×10^{21} atoms $\mathrm{Cu}=1 \mathrm{~g} \mathrm{Cu}$		$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$

No need to do the calculation - just set up the correct dimensional analysis conversions - you may not need to fill in all the boxes.

Question 3 Give the correct formula for the following polyatomic ions:
a) Phosphide
b) Phosphate
c) Sulfite
d) Chromate
e) Cyanide

Question 4 Which of the following apply to the electron?

4 Points

Question 5 8 Points
a) How many protons and neutrons are there in the nucleus of an atom that has an atomic number of 83 and a mass number of 214 ?

Protons:
Neutrons:
Symbol:
\qquad
b) What is the symbol for the element?
\square charge $=-1$
\square charge $=0$
\square charge $=+1$
\square mass $\sim 1.673 \times 10^{-24} g$
c) The atom bears a charge of +3 , then number of electrons is:

Question 6 8 Points

The following questions pertain to the periodic table given at the front of this exam:
a. The atomic weight of the element in group 6A and period 3?
b. What is the name of the halogen that is in period 3?
c. The symbol for the lightest alkali metal is?
d. Circle any of the following that are main group elements? ($Z=$ atomic number)
Sc (Z=21) \quad Te (Z=52) $\quad V(Z=23) \quad$ Cs (Z=55)

Question 7 10 Points
a. Name the compound with the formula $\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}$?
b. Name the compound with the formula $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$?
c. What is the formula for sodium phosphide?
d. What is the formula for iron(III) sulfate?
e. What is the formula for ammonium hydroxide?

Question 8 A certain element consists of two stable isotopes: 4 Points Exact Mass (amu)

Abundance (\%)
51.82
\#1 106.9051
\#2
108.9047

What is the atomic weight of this element?
48.18

Give answer to 4 decimal places.
Show Work
\square
Question 9 How many moles of boron trifluoride, BF_{3}, are present in a sample that contains 7.95 4 Points moles of fluorine atoms?

Question 11 Balance the following chemical equations using the smallest possible integer coefficients. 6 Points
a. __ $\ldots \mathrm{HCl}(\mathrm{aq})+\quad \ldots \mathrm{O}_{2}(\mathrm{~g})$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$
$\ldots \mathrm{Cl}_{2}(\mathrm{~g})$
b. Write a balanced equation for the complete oxidation reaction that occurs when ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ burns in air.

c. Write a balanced equation for the reaction of nitrogen gas with hydrogen gas to produce ammonia $\left(\mathrm{NH}_{3}\right)$
\qquad (g) + \qquad (g) \rightarrow

Question 12 6 Points

a) The orbitals depicted above are what type?
b) Which orbital would have the highest ionization energy?
c) Which orbital would possess the smallest force of attraction?

Question 13
4 Points
a) How many 4 d orbitals are there in an atom?
b) What is the maximum number of electrons in a set of 3 p orbitals? \qquad

Question 14
12 Points
a) Write the electron configuration for the magnesium atom.
b) Write the noble gas configuration for iron, (Fe)?
c) The element with an electron configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}$
d) $\mathrm{Xe},[\mathrm{Kr}] 5 s^{2} 4 \mathrm{~d}^{10} 5 p^{6}$, has how many valence electrons?
e) The element in period 4 that has the Lewis diagram, ${ }^{*}$ t
f) X is a Main Group element in period 3 with $\mathbf{4}$ valence electrons. X is:

Question 15 Using only the periodic table arrange the following elements in order of increasing 4 Points atomic radius: $\quad \mathrm{Na}, \mathrm{N}, \mathrm{K}, \mathrm{P}$

Smallest
\qquad

Largest

Question 16 4 Points

Using only the periodic table arrange the following elements in order of decreasing ionization energy: As, $\mathrm{Cl}, \mathrm{Ge}, \mathrm{P}$

Highest

\qquad
\qquad
\qquad
Lowest

