iA	$1 / 1 / A$	The Periodic Table															IIIIA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$																	He 2
1.01												IIIA	IVA	VA	V/A	V/IA	4.00
Li_{3}	Be 4											B	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{aligned} & \mathrm{Na} \\ & 11 \end{aligned}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											AI 13	Si	P		Cl_{17}	
22.99	24.31	IIM	IVB	VB	V/B	V/IB	V/IM	V/İB	V/IM	18	/18	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{1 4 0 . 1 2}$	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	150.36	152.97	$\mathbf{1 5 7 . 2 5}$	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	$\mathbf{1 6 8 . 9 3}$	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful Formulae and Constants:

$$
\mathrm{pH}=\mathrm{MK}_{\mathrm{a}}+\log _{10} \frac{\text { [Base }]}{[\text { Acid }]}
$$

$$
25^{\circ} \mathrm{C}=298 \mathrm{~K}
$$

$$
K_{w}=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}
$$

$$
\mathrm{R}=0.08205 \mathrm{~L} \cdot \mathrm{~atm} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}
$$

\qquad Firs \dagger

Question 1 6 Points
a. Write a net ionic equation to show that perchloric acid, behaves as an acid in water.

$$
\mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

$$
(\overline{=o r \Leftrightarrow})
$$

b. Write a net ionic equation to show how ammonia behaves as a base in water.

$$
\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
(=\text { or } \Leftrightarrow)
$$

Question 2
8 Points
a. HNO_{2}
$\underline{ }$

1. Strong Acid
b. $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{~N}$
\longrightarrow
2. Weak Acid
c. $\mathrm{CH}_{3} \mathrm{COOH}$
3. Strong Base
d. $\mathrm{Ba}(\mathrm{OH})_{2}$ \qquad 4. Weak Base

Question 3 Circle the appropriate answers
6 Points

	Acid	K				
A	Acetic	1.8×10^{-5}	b. The acid with the smallest pKa:	A	B	C
B	Histidine	7.9×10^{-7}				
C	Carbonic	4.2×10^{-7}	c. The acid with the smallest pOH in a 0.10 M aqueous solution is:	A	B	C

Question 4 A student determines that the value of pKa for $\mathrm{HCN}=9.29$.
What is the value of Ka ? \qquad
Question 5 The hydroxide concentration in an aqueous solution is $3.5 \times 10^{-2} \mathrm{M}$.

Question 6 6 Points
a. The hydronium ion concentration is:
b. The pH of this solution is:
c. The pOH is:

1. For following net ionic equation:

$$
\begin{aligned}
& \mathrm{CN}^{-}(\mathrm{aq})+\mathrm{HSO}_{3}^{-}(\mathrm{aq}) \Leftrightarrow \mathrm{HCN}(\mathrm{aq})+\mathrm{SO}_{3}^{2-}(\mathrm{aq}) \\
& \text { - Circle the appropriate answer - B-L = Bronsted Lowry } \\
& \mathrm{SO}_{3}{ }^{2-} \quad \text { B-L Acid B-L Base } \\
& \mathrm{HSO}_{3}{ }^{-} \quad \text { B-L Acid B-L Base }
\end{aligned}
$$

2. The formula for the conjugate \qquad of CN^{-}is:
3. The formula for the conjugate \qquad of $\mathrm{HSO}_{3}{ }^{-}$is:

Question 7 A buffer solution that is 0.436 M in HCN and 0.436 M in KCN has a pH of 9.40.
Addition of which of the following would increase the capacity of the buffer for added OH^{-}?

KCN
\square both HCN and KCN

HCN
\square pure water
\square none of these choices

Question 8 Which of the following aqueous solutions are buffer solutions?
5 Points
$\square \quad 0.24 \mathrm{M} \mathrm{HI}+0.18 \mathrm{M} \mathrm{NaI}$
$\square \quad 0.10 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+0.18 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOK}$
$\square \quad 0.27 \mathrm{M} \mathrm{NH}_{4} \mathrm{Br}+0.31 \mathrm{M} \mathrm{NH}_{3}$
$\square \quad 0.34 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}+0.39 \mathrm{M} \mathrm{NaNO}_{3}$
$\square 0.10 \mathrm{M} \mathrm{HCl}+0.21 \mathrm{M} \mathrm{NaF}$

Question 9 A buffer solution is made that is 0.434 M in HF and 0.434 M in KF

1. If Ka for HF is $\mathbf{7 . 2 \times 1 0 ^ { - 4 }}$, what is the pH of the buffer solution? \qquad
2. Write the net ionic equation for the reaction that occurs when 0.129 mol HCl is added to 1.00 L of the buffer solution.
\qquad 5 Points

Question 10 A buffer solution is 0.414 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ and 0.324 M in KHCO_{3}. If Ka for $\mathrm{H}_{2} \mathrm{CO}_{3}$ is 4.2×10^{-7}, what is the pH of this buffer solution?
Must show work

$$
\mathrm{pH}=
$$

\square

Question 11 8 Points

A small amount of strong base is added to a buffer made from HCN and NaCN . What changes if any will occur to the following.

Choose from the following choices:

Increase significantly	Increase	Increase slightly
Decrease significantly	Decrease	Decrease slightly

1. pH
2. $\left[\mathrm{OH}^{-}\right]$
3. [HCN]
4. $\left[\mathrm{CN}^{-}\right]$

Question 12 When the nuclide ${ }^{218} \mathrm{Po}$ decays to ${ }^{214} \mathrm{~Pb}$, what kind of decay does ${ }^{218} \mathrm{Po}$ undergo?

6 Points

Question 13
6 Points
\qquad . The instability of ${ }^{218} \mathrm{Po}$ is probably due to the fact that it has too many \qquad .

Write a balanced nuclear equation for the following:
$\square \quad{ }_{26}^{59} \mathrm{Fe}$ undergoing beta decay:

Question 14 What volume of hydrogen gas is produced when 1.33 mol of iron reacts completely 6 Points according to the following reaction at $25^{\circ} \mathrm{C}$ and 1 atm ?
iron (s) + hydrochloric acid (aq) = iron(II) chloride (aq) + hydrogen (g) For full credit you must show work and include a balanced chemical equation.

Question 15 An aqueous solution of hydrochloric acid is standardized by titration with a 0.453 M solution of barium hydroxide.
If 29.4 mL of base are required to neutralize 15.6 mL of the acid, what is the molarity of the hydrochloric acid solution?
For full credit you must show work and include a balanced chemical equation.

[^0]
[^0]: Question 16 How many grams of iron(II) bromide are there in 43.5 mL of an aqueous solution that has
 5 Points a concentration of 0.166 M ?
 Must show work

