IA H 1	The Periodic Table										VIIIA He 2						
1.01	IIA.											IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											В	С	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12											13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			2053
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				vansz nő vi	289 - 2899 	8785 - 5869 S		1999 - 1999 -	1945 - 1945 S	18.05 Core	9424 5954.C	999-02 - 02 2	2888C - 52562	867 E 220 E 2			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lü
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97

140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95		97		99	100		102	
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

SID	Last	First								
Question 1 8 Points	To answer the questions, interpret the following Lewis diagram for NO ₃ ⁻ a) The number of lone pair on central atom									
	b) The number	r of single bond(s)								
	c) The numbe	er of double bond(s)								
	d) The numbe	er of equivalent Lewis structures								
Question 2 8 Points	Draw a Lewis structure for each of the following where the central atom obeys the octet rule .									
	HNC (N is the central atom)	<i>co</i>								
	PO4 ³⁻	HCICO	Cl=Chlorine							
Question 3 6 Points	provided - draw a Lewis structure for CO_3^{2-} in which the central C atom obeys the octet rule, and	 a) The number of unshared pairs (lor central C atom is: b) The central C atom forms sick c) The central C atom forms d 	i ngle bonds.							
Question 4 8 Points	Draw a Lewis structure for each of t C2H2	the following organic molecules . HCOOCH₃								
	CH₃COH	СН₃СН₂ОН								

Question 5	SO_3 has resonance structures - draw them.
6 Points	

Question 6 8 Points	What is the name of the compound with the formula: a) CF4What is the formula for:a) CF4a) Boron trichlorideb) SCl6b) Carbon monoxide
Question 7 6 Points	What is the molecular geometry about: a) Atom 1: b) Atom 2: c) Atom 3:
Question 8 6 Points	H H H H What is the predicted bond angle about: I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I
Question 9 6 Points	What is the predicted bond angle about the following atoms? a) Atom 1 b) Atom 2
Question 10 8 Points	The electron-pair geometry around the Xe atom in XeO 3?
0 roms	There is/are lone pair(s) around the central atom, so the molecular geometry of
	the XeO_3 molecule is predicted to be
	XeO3 is (Polar/Nonpolar)

Question 11 In our discussion on the consequences of molecular polarity, the depiction below was ^{4 Points} used to discuss:

- a) Membranes
- b) Micelle actions
- c) Fabric softeners
- d) The dissolution process
- e) Chelating therapy.
- f) Detergents

Question 12 $N_2(g) + 3 H_2(g) \Leftrightarrow 2 NH_3(g)$

K = 3.5×10⁸ at 298K.

4 Points Assuming you start with N_2 and H_2 and no NH_3 , circle those of the following that best describes the equilibrium system? a) The **reverse** reaction is favored at equilibrium. b) Appreciable quantities of all species are present at equilibrium. c) The forward reaction is favored at equilibrium. d) Very little N₂ will be present at equilibrium. Write the equilibrium constant expression, K, for the following reactions: Question 13 4 Points a) $CO(q) + Cl_2(q) \Leftrightarrow COCl_2(q)$ K = b) $H_3O^{+}(aq) + F^{-}(aq) \Leftrightarrow HF(aq) + H_2O(I)$ K = Question 14 Consider the following system at equilibrium at 500 K: 6 Points $PCl_3(g) + Cl_2(g) \Leftrightarrow PCl_5(g)$ If the volume of the equilibrium system is suddenly increased at constant temperature:: The reaction must: The concentration of Cl₂ will: a) Run in the forward direction. a) Increase b) Run in the **reverse** direction. b) Remain the same c) Remain the same. c) Decrease Question 15 Consider the following system at equilibrium at 298 K: 6 Points $HNO_2(aq) + H_2O(l) \Leftrightarrow H_3O^{+}(aq) + NO_2^{-}(aq)$ When some **OH**⁻ is **added** to the equilibrium system at constant temperature: The reaction must: The concentration of HNO₂ will: a) Run in the **forward** direction. a) Increase b) Run in the **reverse** direction. b) Remain the same c) Remain the same. c) Decrease

Consider the following exothermic reaction at equilibrium at 573 K: Question 16 6 Points

 $2 \text{ NO}(g) + Cl_2(g) \Leftrightarrow 2 \text{ NOCl}(g)$

If the **temperature** of the equilibrium system is suddenly **increased**:

The reaction must:

The concentration of Cl_2 will:

- a) Run in the **forward** direction.
- b) Run in the **reverse** direction.
- c) Remain the same.

- a) Increase
- b) Remain the same
- c) **Decrease**

Exam II Score	