iA	$1 / 1 / A$	The Periodic Table															IIIIA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$																	He 2
1.01												IIIA	IVA	VA	V/A	V/IA	4.00
Li_{3}	Be 4											B	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{aligned} & \mathrm{Na} \\ & 11 \end{aligned}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											AI 13	Si	P		Cl_{17}	
22.99	24.31	IIM	IVB	VB	V/B	V/IB	V/IM	V/İB	V/IM	18	/18	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Some Useful Formulae and Constants:

$$
\mathrm{pH}=\mathrm{pKa}+\log _{10} \frac{\text { [Base }]}{[\text { Acid }]}
$$

$$
25^{\circ} \mathrm{C}=298 \mathrm{~K}
$$

$$
K_{w}=1 \times 10^{-14} @ 25^{\circ} \mathrm{C}
$$

Question 1 6 Points	a. Write a net ionic equation to show that hydrosulfuric acid, behaves as an acid in water. $\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ \qquad \qquad $+$ \qquad $(=\operatorname{or} \Leftrightarrow)$ b. Write a net ionic equation to show how sodium hydroxide behaves as a base in water. $\mathrm{NaOH}(\mathrm{aq})$ \qquad $+$ \qquad ($=$ or \Leftrightarrow)
Question 2 8 Points	a. HNO_{3} \qquad 1. Strong Acid b. HCOOH \qquad 2. Weak Acid c. $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$ \qquad 3. Strong Base d. $\mathrm{NH}_{4}{ }^{+}$ \qquad 4. Weak Base

Question 3 An aqueous solution has a hydroxide ion concentration of $1.0 \times 10^{-2} \mathrm{M}$.
a) What is the hydronium ion concentration in this solution?
b) Is this solution acidic, basic or neutral?
\qquad
\qquad

An aqueous solution has a pOH of 6
a) What is the pH of this solution? \qquad
b) What is the hydronium ion concentration in this solution?
c) What is the hydroxide ion concentration in this solution? \qquad

Question 5 6 Points

Arrange the following solutions in order of increasing acidity:
1 = least acidic ; $3=$ most acidic
a) Solution with a $\mathrm{pH}=11$
b) Solution with a hydroxide ion concentration $=1 \times 10^{-11} \mathrm{M}$
c) Solution with a hydronium ion concentration $=1 \times 10^{-9} \mathrm{M}$

The hydronium concentration in an aqueous solution is $3.51 \times 10^{-2} \mathrm{M}$.
a. The hydroxide ion concentration is: \qquad M
b. The pH of this solution is:
c. The pOH is:

Question 7 6 Points	a) For following net ionic equation: $\begin{array}{ll} \mathrm{HClO}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) & \Leftrightarrow \mathrm{ClO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\ & \text {- Circle the appropriate answer }-\mathrm{B}-L=\text { Bronsted Lowry } \\ \mathrm{H}_{2} \mathrm{O} & \text { B-L Acid } \quad \text { B-L Base } \\ \mathrm{ClO}^{-} & \text {B-L Acid } \end{array}$ b) The formula for the conjugate \qquad of $\mathrm{H}_{3} \mathrm{O}^{+}$is: c) The formula for the conjugate \qquad of ClO^{-}is:
Question 8 4 Points	A buffer solution that is $\mathbf{0 . 4 3 6 M}$ in HCN and $\mathbf{0 . 4 3 6 \mathrm { M }}$ in KCN has a pH of 9.40 . Addition of which of the following would increase the capacity of the buffer for added $\mathrm{H}_{3} \mathrm{O}^{+}$? KCN HCN both HCN and KCN pure water none of these choices
Question 9 4 Points	Which of the following aqueous solutions are buffer solutions? 0.14M HF + 0.17M KF $0.34 \mathrm{M} \mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}+0.25 \mathrm{M} \mathrm{BaI}_{2}$ $0.19 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}+0.21 \mathrm{M} \mathrm{CaCl}_{2}$ $0.34 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}+0.34 \mathrm{M} \mathrm{NH}_{3}$ $0.25 \mathrm{M} \mathrm{HCl}+0.17 \mathrm{M} \mathrm{KCl}$
Question 10 6 Points	A buffer solution is made that is 0.472 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ and 0.472 M in NaHCO_{3}. a) Ka for $\mathrm{H}_{2} \mathrm{CO}_{3}$ is 4.2×10^{-7}, what is the pH of the buffer solution? \qquad b) Write the net ionic equation for the reaction that occurs when 0.129 mol NaOH is added to 1.00 L of the buffer solution. \qquad $+$ \qquad $=$ \qquad $+$ \qquad
Question 11 6 Points	A buffer solution is 0.440 M in HCN and 0.324 M in NaCN . If Ka for HCN is 4.0×10^{-10}, what is the pH of this buffer solution? Must show work $\mathrm{pH}=$

Question 12 6 Points	A small amount of strong acid is added to a buffer made from HCN and NaCN . What changes if any will occur to the following. Choose from the following choices: Increase significantly Decrease significantly Increase Decrease Increase slightly Decrease slightly a) pOH \qquad b) $[\mathrm{HCN}]$ \qquad
Question 13 6 Points	The isotope ${ }^{60}{ }_{27} \mathrm{Co}$ is but one of many isotopes whose Neutron/Proton ratio is too large. a) The only form of radioactive decay available to ${ }^{60}{ }_{27} \mathrm{Co}$ is: \qquad b) The balanced nuclear equation for this decay: ${ }^{60}{ }_{27} \mathrm{Co}=$ \qquad $+$ \qquad
Question 14 6 Points	Write a balanced nuclear equation for the following: a) ${ }^{214}{ }_{82} \mathrm{~Pb}$ undergoing beta decay: \qquad $=$ \qquad b) ${ }^{28} \mathrm{P}$ undergoing positron emission: \qquad $=$ \qquad c) ${ }_{20}^{41} \mathrm{Ca}$ undergoing electron capture: \qquad $=$ \qquad
Question 15 6 Points	How many moles of water will be formed upon the complete reaction of 27.3 grams of sulfuric acid with excess zinc(II) hydroxide? sulfuric acid (aq) + zinc(II) hydroxide (s) = zinc(II) sulfate (aq) + water (I) For full credit you must show work and include a balanced chemical equation.

