IA	IA								VIIIA								
H		The Periodic Table								He							
1	11.0								2								
1.01	nn Do	1											N/A	N	V/A		4.00
	De											P	-	N	0	5	Ne
6 9.4	9.01											10.81	12.01	14.01	16.00	19.00	20 18
Na	Ma	2										AL	C:	D	10.00	CI	20.10
Na	ivig											A	51	5	3	47	A
22.99	24 31	(((8	0/8	1/B	V/B	VIIB	VIIIA	VIIIA	VIIIA	(8	118	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	Ac	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	Te	Ĩ	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful Formulae and Constants:

$$pH = pKa + log_{10} \frac{[Base]}{[Acid]}$$

25⁰C = 298K

 $K_w = 1 \times 10^{-14} @ 25^{\circ}C$

SID	Last First							
Question 1 7 Points	 a) Write a net ionic equation to show that hydrocyanic acid, behaves as an acid in water. HCN(aq) + H₂O(I) + (= or ⇔) 							
	b) Write a net ionic equation to show how barium hydroxide behaves as a base in water.							
Question 2	Assign each species on the left to a category on the right .							
8 Points	a) HF 1 Strong Acid							
	b) $Ba(OH)_2$ 2 Weak Acid							
	c) $(CH_2)_2NH$ 3 Strong Base							
	d) HNO3 4 . Weak Base							
Question 3 6 Points	An aqueous solution has a hydroxide ion concentration of 1.0 X 10 ⁻² M.							
	What is the hydronium ion concentration in this solution?M							
	b) Is this solution acidic , basic or neutral ?							
Question 4	An aqueous solution has a pH of 8.30							
6 Points	a) What is the pOH of this solution?							
	b) What is the hydronium ion concentration in this solution?M							
	c) What is the hydroxide ion concentration in this solution?M							
Question 5 6 Points	Arrange the following solutions in order of increasing acidity : 1 = least acidic ; 3 = most acidic							
	a) Solution with a pOH = 8							
	b) Solution with a hydroxide ion concentration = 1x10 ⁻¹⁰ M							
	c) Solution with a hydronium ion concentration = 1×10 ⁻¹³ M							
Question 6 3 Points	Hydrocyanic acid (HCN) has a Ka = 4.0×10^{-10} @ 25°C. Which of the following amino acids has an acid strength closest to that of HCN?							
	🗆 Arginine pKa = 12.0 🛛 Cysteine pKa = 8.3							
	🗆 Lysine pKa = 9.0 🛛 🖓 Histidine pKa = 6.1							

Question 7 9 Points	In the following net ionic equation: $CH_3NH_2(aq) + H_2O(l)$	← CH ₃ NH ₃ ⁺ + OH ⁻						
	a) CH3NH2 is a Bronsted-Lowry							
	b) H2O is a Bronsted-Lowry							
	c) The formula of the product that acts as a proton acceptor :							
Question 8 6 Points	a) The formula for the conjugate acid of	HSO3 ⁻ is:						
	b) The formula for the conjugate base of	HSO ₃ ⁻ is:						
Question 9 4 Points	Which of the following aqueous solutions are b	uffer solutions?						
	0.21M HI + 0.17M KI	0.31M HCIO + 0.28M KCIO						
	0.13M NaOH + 0.24M NaCl	□ 0.26M NH₄NO ₃ + 0.37M KNO ₃						
	$\Box 0.16 \text{M CH}_3 \text{COOH} + 0.21 \text{M CH}_3 \text{COOK}$							
Question 10 8 Points	A buffer solution is made that is 0.432M in H	25 and 0.432M in NaHS						
(2 Points)	a) If Ka for H₂S is 1.0×10 ⁻⁷ , what is the p ł	d of the buffer solution?						
(4 Points)	b) Write the net ionic equation for the re added to 1.00 L of the buffer solution.	action that occurs when 0.088mol HBr is						
	+	_ = +						
	1							
(2 Points)	c) The Buffer capacity for removal of add	ded OH ⁻ is:M						
(2 Points) Question 11	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324	ded OH ⁻ is: M IM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what						
<i>(2 Points)</i> Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is: M IM in NaCN. If Ka for HCN is 4.0×10 ⁻¹⁰ , what <u>For full credit you must show work</u>						
<i>(2 Points)</i> Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is: M FM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what For full credit you must show work						
<i>(2 Points)</i> Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is: M IM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what <u>For full credit you must show work</u>						
<i>(2 Points)</i> Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is: M IM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what <u>For full credit you must show work</u>						
(2 Points) Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is: M IM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what <u>For full credit you must show work</u>						
(2 Points) Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is: M IM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what <u>For full credit you must show work</u>						
(2 Points) Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is: M IM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what For full credit you must show work						
(2 Points) Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is:M IM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what For full credit you must show work						
(2 Points) Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is:M IM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what For full credit you must show work						
(2 Points) Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is:M IM in NaCN. If Ka for HCN is 4.0x10 ⁻¹⁰ , what For full credit you must show work						
(2 Points) Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is:M M in NaCN. If Ka for HCN is 4.0×10^{-10} , what For full credit you must show work						
(2 Points) Question 11 5 Points	c) The Buffer capacity for removal of add A buffer solution is 0.398M in HCN and 0.324 is the pH of this buffer solution?	ded OH ⁻ is:M IM in NaCN. If Ka for HCN is 4.0×10^{-10} , what For full credit you must show work						

Question 12 6 Points	The p	Ka value for	r HNO2 is 3.35 .					
(3 Points)	a) Would a buffer prepared from HNO_2 and KNO_2 with a pH of 3.00 be considered to							
	be an effective buffer? (Yes or No)							
(3 Points)	b) A buffer in which the mole ratio of KNO_2 to HNO_2 is 0.46.							
		Would this buffer solution have a greater capacity for added acid (H_3O^+) or added						
	base (OH-)?							
Question 13 4 Points	A small amount of strong base is added to a buffer made from HCN and NaCN . What changes if any will occur to the following.							
	Choos	e from the	following choices:					
		Increase	significantly		Increase	Increase	e slightly	
		Decrease	significantly		Decrease	Decrease slightly		
	a)	рОН						
	b)	[HCN]						
0 11 11	14/L +							
QUESTION 14 6 Points	Whether or not the process is observed in nature, which of the following could account for the following transformations: <u>(Choose all that apply)</u>							
	a)	²³⁴ U -	→ ²³⁰ Th		alpha decay		beta decay	
					electron capture	e 🛛	positron emission	
	b)	²¹⁰ Pb -	► ²¹⁰ Bi		alpha decay		beta decay	
					electron capture	e 🛛	positron emission	
	c)	⁵¹ Cr —	→ ⁵¹ V		alpha decay		beta decay	
					electron capture	e 🛛	positron emission	
Question 15	You ne	eed to make	e an aqueous soluti	on of O	.145M iron(III)	sulfate for a	an experiment in lab,	
4 roints	using	a SUUML vo	iumetric flask. Ho	w many	grams of Iron(III	.) suitate sr <u>For full c</u>	nould you add?: predit you must show work.	
							0	

Question 16 6 Points	An aqueous solution of barium hydroxide is standardized by titration with a 0.199M solution of hydrochloric acid . If 21.0mL of base are required to neutralize 18.9mL of the acid, what is the molarity of the barium hydroxide solution? <i>For full credit you must show work and give a balanced chemical equation</i> .
Question 17 6 Points	According to the following reaction, how many grams of water will be formed upon the complete reaction of 29.0 grams of oxygen gas with excess hydrochloric acid? hydrochloric acid (aq) + oxygen (g) water (l) + chlorine (g) <i>For full credit you must show work and give a balanced chemical equation.</i>

Do Not Write Below This

Exam III Score