
IA H 1			٦	The	Pe	erio	odi	сT	ab	le							VIIIA He 2
1.01	IIA	i										IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											в	С	Ν	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	2										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	Ρ	S	CI	Ar
11	12	in	440	140	1.00	Luin	1.000	1.000	1.000	10		13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB	26.98	28.09	30.97	32.07	35.45	39.95
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)		114	106.42			114.82	1000	1000	200	126.90	
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ТІ	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33		1000	180.95		1.0.00	190.2	0120 3	195.08			204.38		208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)]		
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

SID	Last	First						
Question 1 6 Points	[:g-N=0:]The following questions pertain to the Lewis Dot structure depicted on the lefta) With respect to the central nitrogen atom:							
	i. The number of lone pairs:							
	ii. The number of single bond							
	iii. The number of double bonds:							
Ourstien 2	b) How many equivalent Lewis Struc							
Question 2 12 Points	rule.	he following where the central atom obeys the octet						
	N2	NCl3 (Cl = Chlorine)						
	NOF	Cyanide ion						
Question 3 12 Points	Draw a Lewis structure for each of your diagram to answer the question:	the following organic molecules on the left. Then use						
(6 Points)	CH ₃ CH ₂ COOH	Count double bonds as 2 bonds for this structure only.						
		a) The number of C-H bonds						
		b) The number of C-C bonds						
		c) The number of C-O bonds						
(6 Points)	C₂H₄	a) The number of C-H bonds						
		b) The number of C-C single bonds						
		c) The number of C=C double bonds						
Question 4 6 Points	a) Name of the compound with t	he formula N2O?						
	b) Name of the compound with t	he formula SO 2?						
	c) Formula for dinitrogen tetraoxide?							

Question 5 4 Points	Draw all resonan d	ce structures for HCO2 ⁻ :						
Question 6 6 Points	н—ё́−н	The following questions pertain to the Lewis Structure of SeH ₂ depicted on the left: a) The electron-pair geometry around Se is: b) The molecular geometry around Se is:						
Question 7								
6 Points	a) What is tl	he electron-pair geometry about N in NICl ₂ :						
	b) What is the molecular geometry about N in NICl ₂ :							
Question 8 6 Points	H 1 1 3 H 1 2 3 H	What is the molecular geometry about: a) Atom 1: b) Atom 2: c) Atom 3:						
Question 9 6 Points	н :0: нСС_ 1 н	H H The predicted bond angle about: a) Atom 1:						
Question 10 4 Points		What is the predicted bond angle about the following atoms? a) Carbon 1 b) Nitrogen 2 						
Question 11 6 Points	Label the followin formula) a) NOCI (cl b) N ₂	ng molecules as polar or nonpolar . (The central atom is given first in the = Chlorine)						
	c) SCl ₂ (Cl =	Chlorine)						

Question 12 3 Points	In our discussion on the consequences of molecular polarity , the cartoon shown below was used to discuss:								
	a) Mer	anes							
		elle action							
	en histor	ofteners							
	en in	e dissolves like							
	And an address of the second second second second	e) Detergents							
Question 13									
4 Points									
	a) F⁻ + H₂O (I) ← HF (aq) + OH⁻	К=							
	b) 2NOCl(g) ← 2NO(g) + Cl₂(g)	К=							
Question 14 4 Points	For the following equilibrium system, K = HNO ₂ (ag) + (4.50×10¹⁰ at 298K. OH ⁻ \implies NO ₂ ⁻ + H ₂ O(I)							
	Assuming that you start with equal concentrations of HNO_2 and OH^- , and that no NO_2^- is initially present, which of the following best describes the equilibrium system?								
	a) The reverse reaction is favored at	t equilibrium.							
	b) Very little HNO2 will be present at equilibrium								
	c) Appreciable quantities of all species are present at equilibrium.								
	d) The forward reaction is favored at equilibrium.								
Question 15									
4 Points	$2NH_3(g) \rightleftharpoons N_2(g) + 3H_2(g)$ When some NH ₃ (g) is removed from the equilibrium system at 723K								
	The reaction must:	The concentration of H ₂ will							
	a) Run in the forward direction	a) Increase							
	b) Run in the reverse direction	b) Decrease							
	c) Remain the same	c) Remain the same							
Question 16	Consider the following system at equilibrium at 298 K:								
4 Points	$2NO(g) \rightleftharpoons N_2(g) + O_2(g) + 43.2 \text{ kcal}$								
	If the temperature on the equilibrium system is suddenly increased : The reaction must : This is because by increasing the temper								
	a) Run in the forward direction	a) Increases							
	b) Run in the reverse direction	b) Decreases							

Question 17 3 Points	Consider the following system at equilibrium at 298K: $HNO_2(aq) + OH^- \rightleftharpoons NO_2^- + H_2O(I)$ The addition of H_3O ⁺ will cause the concentration of HNO_2 to:		
	a) Increase		
	b) Decrease		
	c) Remain the same		
Question 18 4 Points	Consider the following exothermic reaction at equilibrium at 800K 2H ₂ (g) + S ₂ (g) \Longrightarrow 2H ₂ S(g) The production of H ₂ S(g) is favored by: Indicate True (T) or False (F) for each of the following:		
	 a) Increasing the temperature. b) Decreasing the volume. 		
	c) Removing S ₂ .		
	d) Decreasing the pressure .		

Do Not Write Below This

Exam II Score	