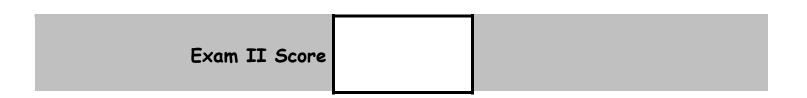

IA H 1											VIIIA He 2						
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											В	С	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12											13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
	88	3. S		1671-52 (15) 24	AS 2000		<u>no - 199</u>	5080 - 1554 -	1947) - 1943 S	18.00 S	5925 - 5864 C	1979-52 (195 19	-1993 (C	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97

140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	1/4.9/	
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	ĺ
90	91	92	93	94	95	96	97	98	99	100	101	102	103	
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11	



SID	Last	First				
Question 1 3 Points	To answer the questions, interpret the followi a) The number of single : Ö—S=Ö b) The number of doub c) The number of equiv	le bond				
Question 2 8 Points	Draw a Lewis structure for each of the follow octet rule. CN ⁻	ing where the central atom obeys the F_2CO				
	ClO ₃ -	NH₃				
Question 3 6 Points	provided - draw a Lewis structure for CO_2 in which the central C atom obeys the octet rule, and b) The ce	umber of unshared pairs (lone pairs) on the al C atom is: entral C atom forms single bonds. entral C atom forms double bonds.				
Question 4 8 Points	Draw a Lewis structure for each of the follow CH3OCH2CH3	ing organic molecules . HCOOH				
	CH₃CONH₂	C ₃ H ₆				

Question 5 6 Points	NO2CI has resonance structures – draw them.	Cl = Chlorine						
Question 6 8 Points	What is the name of the compound with the formula: a) NF ₃ b) P ₄ O ₁₀	What is the formula for: a) sulfur hexafluoride b) Nitrogen monoxide						
Question 7 6 Points	H :0: H H H C C 0 C - C - H 1 2 3 H H H	What is the bond angle about: a) 1: b) 2: c) 3:						
Question 8 6 Points	Unlabelled atoms are H	What is the bond angle about the following atoms? C2 O3 N6						
Question 9 4 Points HNO2(aq) + OH ⁻ (aq) ⇔ NO2 ⁻ (aq) + H2O(l) K = 4.50×10 ¹⁰ at 298 Assuming you start with equal concentrations of HNO2 and OH ⁻ , and no NO2 ⁻ present, circle those of the following that best describes the equilibrium syst a) The forward reaction is favored at equilibrium. b) Appreciable quantities of all species are present at equilibrium. c) The reverse reaction is favored at equilibrium. d) Very little OH ⁻ will be present at equilibrium.								
	e) The concentration of NO2 ⁻ will be approximately equal to the HNO2 concentration at equilibrium.							

Question 10 8 Points	ö=s=ö ∷ö-	-ö=ö	н—ё—н					
	A	В	С					
	The following questions relate to the Lewis Structures depicted above							
	 a) The molecule with the smallest bond angle: b) The molecular geometry of B: c) The Electron Pair Geometry of C: 							
Question 11 6 Points	The electron-pair geometry around the N atom in NOCI ? There							
	is/are lone pair(s) around the central atom, so the molecular geometry of the							
	NOCI molecule is predicted to be							
Question 12 4 Points	Write the equilibrium constant expression	, K, for the followi	ng reactions:					
	a) 2 NOBr(g) ⇔ 2 NO(g) + Br₂(g)	K =						
	b) HCN(aq) + H₂O(I) ⇔ H₃O⁺(aq) + CN⁻(aq) K =						
Question 13	Consider the following system at equilibrium at 698 K:							
6 Points	2 HI(g) \Leftrightarrow H ₂ (g) + I ₂ (g) When some I ₂ (g) is removed from the equilibrium system at constant temperature:							
	The reaction must:	-	ration of H ₂ will:					
	a) Run in the forward direction.	a) Incre	ase					
	b) Run in the reverse direction.	b) Remai	n the same					
	c) Remain the same .	c) Decre	ase					
Question 14 6 Points	Consider the following system at equilibrium at 298 K: $H_3O^{+}(aq) + NO_2^{-}(aq) \Leftrightarrow HNO_2(aq) + H_2O(l)$							
	When some OH ⁻ is added to the equilibrium system at constant temperature:							
	The reaction must:		ration of HNO 2 will:					
	a) Run in the forward direction.	a) Incre						
	 b) Run in the reverse direction. c) Domain the come 		n the same					
	c) Remain the same .	c) Decre	205e					

Question 15 6 Points	Consider the following system at equilibrium at 573 K: 2 NO(g) + Cl₂(g) ⇔ 2 NOCl(g) + 18.4 kcal If the temperature of the equilibrium system is suddenly decreased :					
	The reaction must:	The concentration of Cl 2 will:				
	a) Run in the forward direction.	a) Increase				
	b) Run in the reverse direction.	b) Remain the same				
	c) Remain the same .	c) Decrease				
Question 16 6 Points	 6 Consider the following system at equilibrium at 675K: N₂(g) + 3 H₂(g) ⇔ 2 NH₃(g) If the volume of the equilibrium system is suddenly increased: 					
	The reaction must:	The concentration of \mathbf{NH}_3 will:				
	d) Run in the forward direction.	d) Increase				
	e) Run in the reverse direction.	e) Remain the same				
	f) Remain the same .	f) Decrease				
Question 17 3 Points	In our discussion on the consequences of molecular polarity , the depiction below was u to discuss:					
	a) Fabric so	fteners				
	b) Membran	b) Membranes c) Detergents				
	c) Detergen					
	d) Like disso	olves like				
	Oil in Water e) Lead pois	oning				

