Question 1 6 Points	a) Write a net ionic equation to show HF , behaves as an acid in water. $\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \stackrel{\mathrm{H}_{3} \mathrm{O}^{+}}{(=\text {or } \Leftrightarrow)}+\cdots \mathrm{F}^{-}$ b) Write a net ionic equation to show how ammonia behaves as a base in water. $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \stackrel{\Leftrightarrow}{(=\text { or } \Leftrightarrow)} \quad \stackrel{\mathrm{NH}_{4}^{+}}{ }+\frac{\mathrm{OH}^{-}}{}$
Question 2 8 Points	Assign each species on the left to a category on the right. a) HI b) LiOH c) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ d) HCN 3 \qquad 4 1. Strong Acid 2. Weak Acid 3. Strong Base 4. Weak Base
Question 3 6 Points	An aqueous solution has a hydronium ion concentration of $1.0 \times 10^{-2} \mathrm{M}$. a) What is the hydroxide ion concentration in this solution? \qquad 1×10^{-12} M b) Is this solution acidic, basic or neutral?
Question 4 6 Points	An aqueous solution has a pOH of 8.30 a) What is the pH of this solution? b) What is the hydronium ion concentration in this solution? c) What is the hydroxide ion concentration in this solution? 5.70 \qquad M 5.01×10^{-9} \qquad M
Question 5 6 Points	Arrange the following solutions in order of increasing acidity: 1 = least acidic ; 3 = most acidic a) Solution with a hydroxide ion concentration $=1 \times 10^{-10} \mathrm{M}$ 3 b) Solution with a hydronium ion concentration $=1 \times 10^{-13} \mathrm{M}$ c) Solution with a $\mathrm{pOH}=8$
Question 6 6 Points	The autoionization of water is an endothermic process: $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}$ This means that as we heat water: a) The $\left[\mathrm{OH}^{-}\right]$ b) The water becomes Decreases Basic Increases Acidic Remains the same Remains Neutral

Question 7 6 Points	In the following net ionic equation: $\mathrm{CH}_{3} \mathrm{NH}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{OH}^{-}$ a) $\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$ is a Bronsted-Lowry \qquad Acid b) OH^{-} is a Bronsted-Lowry \qquad Base c) The formula of the reactant that acts as a proton acceptor:
Question 8 6 Points	a) The formula for the conjugate acid of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$is: b) The formula for the conjugate base of $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$is:
Question 9 6 Points	Which of the following aqueous solutions are buffer solutions? 0.21M HI + 0.17M KI $0.31 \mathrm{M} \mathrm{HClO}+0.28 \mathrm{M} \mathrm{KClO}$ $0.13 \mathrm{M} \mathrm{NaOH}+0.24 \mathrm{M} \mathrm{NaCl}$ $0.26 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}+0.37 \mathrm{M} \mathrm{KNO}_{3}$ $0.16 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}+0.21 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOK}$
Question 10 8 Points (2 Points) (4 Points) (2 Points)	A buffer solution is made that is 0.44 M in HCN and 0.44 M in NaCN a) If Ka for HCN is 4.0×10^{-10}, what is the pH of the buffer solution? b) Write the net ionic equation for the reaction that occurs when a small quantity of OH^{-}is added to the buffer solution. \qquad OH^{-} \qquad \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ \qquad $C N^{-}$ c) The Buffer capacity for removal of $\mathrm{H}_{3} \mathrm{O}^{+}$is: \qquad 44 M
Question 11 6 Points	A buffer solution is 0.398 M in $\mathrm{H}_{2} \mathrm{~S}$ and 0.324 M in NaHS . If Ka for $\mathrm{H}_{2} \mathrm{~S}$ is 1.0×10^{-7}, what is the pH of this buffer solution? $\begin{aligned} p H & =p K a+\log _{10} \frac{\text { [Buffer base }]}{[\text { Buffer acid }]} \\ & =-\log _{10}\left(1 \times 10^{-7}\right)+\log _{10}\left(\frac{0.324}{0.398}\right) \\ & =7.00+\log _{10}(0.814) \\ & =7.00-0.09 \\ & =6.91 \end{aligned}$
	$\mathrm{pH}=6.91$

Question 16 6 Points	An aqueous solution of calcium hydroxide is standardized by titration with a 0.199M solution of hydrobromic acid. If 21.4 mL of base are required to neutralize 18.9 mL of the acid, what is the molarity of the calcium hydroxide solution? For full credit you must show work and give a balanced chemical equation.
	0.0879 M
Question 17 6 Points	According to the following reaction, how many grams of water will be formed upon the complete reaction of $\mathbf{2 9 . 0}$ grams of hydrochloric acid with excess oxygen gas? hydrochloric acid (aq) + oxygen (g) \longrightarrow water (I) + chlorine (g) For full credit you must show work and give a balanced chemical equation. $4 \mathrm{HCl}+\mathrm{O}_{2}=2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{Cl}_{2}$ $\mathrm{HCl}: 1.01+35.45=36.46 \mathrm{~g} \cdot \mathrm{~mol}^{-1} \quad \mathrm{H}_{2} \mathrm{O}: 2(1.01)+16.00=18.02 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$ $\begin{array}{l\|l} 29.0 \mathrm{~g} \mathrm{HQP} & 1 \mathrm{~mol} \\ \hline 36.46 \mathrm{~g} \end{array}=0.755 \mathrm{~mol} \mathrm{HCl}, \quad \begin{array}{l\|l} 2 \mathrm{HCl} \end{array}=0.397 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

Do Not Write Below This

