IA H 1	IJА		٦	The	Pe	eric	odi	с Т	ab	le		IIIA	IVA	VA	VIA	VIIA	V///A He 2 4.00
1.01 Li	Be	ř.										B	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg	8										AL	Si	Р	S	CI	Ar
11	12	-										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	<i>IB</i>	<i>IIB</i>	26.98	28.09	30.97	32.07	35.45	39.95
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мο	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
37	38 87.62	39 88.91	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47			91.22	92.91	95.94			102.91	1.1			114.82		121.76	200	18. 3	
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55 132.91	56 137.33	57	72 178.49	73 180.95	74 183.85	75	76 190.2	77 192.22	78 195.08	79 197.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
Fr	Ra	Ac	Rf	Db		Bh	Hs	Mt	Ds		Uub	Uut	Uuq		(203)	(210)	(222)
87	88	89	104	105	Sg 106	107	108	109	110	Rg	112	113	114	Uup 115			
223.02		~~	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
			()	(/		(202)	(200)	()	()	()	()	((200)	(/	1		
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful Formulae and Constants:

$$pH = pKa + log_{10} \frac{[Base]}{[Acid]}$$

25⁰C = 298K

 $K_w = 1 \times 10^{-14} @ 25^{\circ}C$

SID	Last First
Question 1 6 Points	 a. Write a net ionic equation to show that hydrosulfuric acid, behaves as an acid in water. H₂S(aq) + H₂O(l) + (= or ⇔) b. Write a net ionic equation to show how sodium hydroxide behaves as a base in water.
	NaOH(aq) + (= or ⇔)
Question 2 8 Points	a. HNO3
	d. NH4 ⁺ 4 . Weak Base
Question 3 4 Points	 An aqueous solution has a hydroxide ion concentration of 1.0 X 10⁻² M. a) What is the hydronium ion concentration in this solution? M b) Is this solution acidic, basic or neutral?
Question 4 6 Points	An aqueous solution has a pOH of 6 a) What is the pH of this solution? b) What is the hydronium ion concentration in this solution? c) What is the hydroxide ion concentration in this solution?
Question 5 6 Points	Arrange the following solutions in order of increasing acidity: 1 = least acidic ; 3 = most acidic a) Solution with a pH = 11 b) Solution with a hydroxide ion concentration = 1×10 ⁻¹¹ M c) Solution with a hydronium ion concentration = 1×10 ⁻⁹ M
Question 6 6 Points	The hydronium concentration in an aqueous solution is 3.51×10⁻² M. a. The hydroxide ion concentration is: M b. The pH of this solution is: c. The pOH is:

Question 7 6 Points	a) For following net ionic equation: HClO(aq) + H₂O(l) ⇔ ClO⁻ + H₃O⁺ - Circle the appropriate answer - B-L = Bronsted Lowry										
	H2O B-L Acid B-L Base										
	CIO ⁻ B-L Acid B-L Base										
	b) The formula for the conjugate of H_3O^+ is:										
	c) The formula for the conjugate of CIO ⁻ is:										
Question 8 4 Points	A buffer solution that is 0.436M in HCN and 0.436M in KCN has a pH of 9.40 .										
	Addition of which of the following would increase the capacity of the buffer for added H_3O^2 ?										
	□ KCN □ HCN										
	both HCN and KCN pure water										
	\Box none of these choices										
Question 9 4 Points	Which of the following aqueous solutions are buffer solutions ?										
	$\Box 0.14 \text{M HF} + 0.17 \text{M KF} \qquad \Box 0.34 \text{M Ba}(ClO_4)_2 + 0.25 \text{M BaI}_2$										
	$\Box 0.19M \ Ca(OH)_2 + 0.21M \ CaCl_2 \qquad \Box 0.34M \ NH_4NO_3 + 0.34M \ NH_3$										
	□ 0.25M HCl + 0.17M KCl										
Question 10 6 Points	A buffer solution is made that is 0.472M in H_2CO_3 and 0.472M in NaHCO_3. a) Ka for H_2CO_3 is 4.2×10 ⁻⁷ , what is the pH of the buffer solution?										
	b) Write the net ionic equation for the reaction that occurs when 0.129 mol NaOH is added to 1.00 L of the buffer solution.										
	+ = +										
Question 11 6 Points	A buffer solution is 0.440M in HCN and 0.324M in NaCN. If Ka for HCN is 4.0×10^{-10} , what is the pH of this buffer solution? Must show work										
	pH =										

Question 12 6 Points	A small amount of strong acid is added to a buffer made from HCN and NaCN . What changes if any will occur to the following.					
	Choose from the following choices:					
	Increase significantly Increase Increase slightly Decrease significantly Decrease Decrease slightly					
	a) pOH					
	b) [HCN]					
Question 13 6 Points	The isotope ⁶⁰ 27 Co is but one of many isotopes whose Neutron/Proton ratio is too large .					
	a) The only form of radioactive decay available to ⁶⁰ 27Co is:					
	b) The balanced nuclear equation for this decay: ⁶⁰ 27Co = +					
Question 14 6 Points	Write a balanced nuclear equation for the following:					
0 1 01113	a) ²¹⁴ 82 Pb undergoing beta decay: =					
	b) ²⁸ 15 P undergoing positron emission: =					
	c) ⁴¹ 20 Ca undergoing electron capture: =					
Question 15 6 Points	How many moles of water will be formed upon the complete reaction of 27.3 grams of sulfuric acid with excess zinc(II) hydroxide? sulfuric acid (aq) + zinc(II) hydroxide (s) = zinc(II) sulfate (aq) + water (l) For full credit you must show work and include a balanced chemical equation.					
	mol					

Question 16 8 Points	An aqueous solution of barium hydroxide is standardized by titration with a 0.140 M solution of hydrochloric acid .
	If 26.8 mL of base are required to neutralize 19.4 mL of the acid, what is the molarity of the barium hydroxide solution?
	For full credit you must show work and include a balanced chemical equation.
	Μ
Question 17 6 Points	What volume of a 0.142 M solution of aluminum bromide contains the same number of moles of aluminum bromide as there are in 43.2 mL of a 0.124 M solution of aluminum
	bromide? Must show work
	L