
IA H 1	The Periodic Table										VIIIA He 2						
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be	î.										B	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	8										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12	MINT										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB –	IIB -	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	L .	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup		5546 - Shi s	2006
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
a 1			8785 - 1989 C	1671-52 - 176 24	AS 2553	C 446/40	<u>no - 199</u>	5080 - 1514 1	1947) - 1943 S	18.00 S		167182 - 178 18	-1993 (C				
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				59	50	60	64	63	62	6.4	65	66	67	69	60	70	74

	Ce	Pr	Nd	Pm	Sm	Eu	Gd	D	Dy	Ho	Er	I m	Yb	Lu
	58	59	60	61	62	63	64	65	66	67	68	69	70	71
1	40.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
2	32.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

SID	Last	First				
Question 1 8 Points	b) The numb c) The numb	ne following Lewis diagram for SO ₂ ber of lone pair on central atom ber of single bond(s) ber of double bond(s) ber of equivalent Lewis structures				
Question 2 8 Points	Draw a Lewis structure for each of th rule. O ₂ ClO ₃ ⁻	he following where the central atom obeys the octe Carbon dioxide F2CO				
Question 3 6 Points	On the rough work paper provided – draw a Lewis structure for NO ₂ ⁻ in which the central N atom obeys the octet rule , and answer the questions on the right based on your drawing.	c) The central N atom forms double bonds.				
Question 4 8 Points	Draw a Lewis structure for each of t C ₃ H ₈	he following organic molecules . HCOOH				
	CH ₃ COCH ₃	CH₃COONH₂				

Question 5 6 Points	O3 has resonance structures - dr	aw them.
Question 6 8 Points	What is the name of the compoun formula: a) N ₂ O b) BBr 3	d with the What is the formula for: a) Phosphorus pentachloride b) Sulfur hexafluoride
Question 7 6 Points	$H - c \equiv c - c - c - H $ H - c = c - c - c - H H - H - H - H - H - H - H - H - H - H -	What is the electron pair geometry about: a) Atom 1: b) Atom 2: c) Atom 3:
Question 8 6 Points		What is the predicted bond angle about: a) Atom 1: b) Atom 2: c) Atom 3:
Question 9 4 Points		What is the predicted bond angle about the following atoms? a) Nitrogen 1 b) Nitrogen 2
Question 10 6 Points	The Lewis Dot Structure for NO a) The electron pair geometr b) The molecular geometry ar	y around N is:

9 Dointo		etry around the S atom in SBr2? There						
8 Points	is/are lone pair(s) around the central atom, so the molecular geometry of the							
	SBr_2 molecule is predicted to be							
	SBr ₂ is	. (Polar/Nonpolar)						
Question 12 4 Points	In our discussion on the consequences of molecular polarity , the data shown below was used to discuss:							
	Solubility of Some Common Substances	a) Membranes						
	Compound Solubility in H ₂ C g/100mL	b) Micelle action						
	O ₂ 4.5x10 ⁻³ 18	s°C c) Fabric softeners						
	_	8°C d) Like dissolves like						
	CO ₂ 0.179 1							
Question 13	ClO⁻(aq) + H₂O(l)⇔ HC	IO(ag) + OH ⁻ (ag) K = 2.86×10 ⁻⁷ at 298K.						
	best describes the equil a) The reverse reac	CIO ⁻ and no HCIO or OH ⁻ , circle those of the following that ibrium system? tion is favored at equilibrium.						
	a) The reverse reac b) Appreciable quan c) The forward reac	ibrium system?						
Question 14 6 Points	a) The reverse reac b) Appreciable quan c) The forward reac d) Very little HClO	ibrium system? tion is favored at equilibrium. tities of all species are present at equilibrium. ction is favored at equilibrium.						
•	a) The reverse reac b) Appreciable quan c) The forward reac d) Very little HClO	ibrium system? tion is favored at equilibrium. tities of all species are present at equilibrium. ction is favored at equilibrium. will be present at equilibrium. onstant expression , K, for the following reactions:						
•	a) The reverse reac b) Appreciable quan c) The forward reac d) Very little HClO Write the equilibrium co	ibrium system?tion is favored at equilibrium.tities of all species are present at equilibrium.ction is favored at equilibrium.will be present at equilibrium.onstant expression, K, for the following reactions: $O(g) + Cl_2(g)$ K =						
•	 a) The reverse react b) Appreciable quant c) The forward readt d) Very little HClO Write the equilibrium constraints a) 2 NOCl(s) ⇔ 2 Notes b) HF(aq) + H₂O(l) ⇔ 	ibrium system?tion is favored at equilibrium.tities of all species are present at equilibrium.ction is favored at equilibrium.will be present at equilibrium.onstant expression, K, for the following reactions: $O(g) + Cl_2(g)$ K =						
6 Points Question 15	 a) The reverse reac b) Appreciable quant c) The forward read d) Very little HClO Write the equilibrium co a) 2 NOCl(s) ⇔ 2 No b) HF(aq) + H₂O(l) ⇔ Consider the following sy 	ibrium system? tion is favored at equilibrium. tities of all species are present at equilibrium. ction is favored at equilibrium. will be present at equilibrium. onstant expression, K, for the following reactions: $O(g) + Cl_2(g)$ K = $\Rightarrow H_3O^*(aq) + F^-(aq)$ K = ystem at equilibrium at 698K:						
6 Points Question 15	 a) The reverse reac b) Appreciable quant c) The forward read d) Very little HClO Write the equilibrium co a) 2 NOCl(s) ⇔ 2 No b) HF(aq) + H₂O(l) ⇔ Consider the following sy 	ibrium system? tion is favored at equilibrium. tities of all species are present at equilibrium. ction is favored at equilibrium. will be present at equilibrium. onstant expression, K, for the following reactions: $O(g) + Cl_2(g)$ K = $\Rightarrow H_3O^+(aq) + F^-(aq)$ K = ystem at equilibrium at 698K: $H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$						
6 Points Question 15	 a) The reverse react b) Appreciable quant c) The forward readed d) Very little HClO Write the equilibrium constant a) 2 NOCl(s) ⇔ 2 No b) HF(aq) + H₂O(l) ⇔ Consider the following symptotic symptot symptotic symptotic symptotic symptotic symptot sympto	ibrium system? tion is favored at equilibrium. tities of all species are present at equilibrium. ction is favored at equilibrium. will be present at equilibrium. onstant expression, K, for the following reactions: $O(g) + Cl_2(g)$ K = \Rightarrow $H_3O^+(aq) + F^-(aq)$ K = ystem at equilibrium at 698K: $H_2(g) + I_2(g) \Leftrightarrow 2HI(g)$ cd to the equilibrium system at constant temperature: The concentration of H_2 will:						
6 Points Question 15	 a) The reverse react b) Appreciable quant c) The forward reade d) Very little HClO Write the equilibrium construction a) 2 NOCl(s) ⇔ 2 No b) HF(aq) + H₂O(l) ⇔ Consider the following sy When some I₂(g) is added The reaction must: 	ibrium system? tion is favored at equilibrium. tities of all species are present at equilibrium. ction is favored at equilibrium. will be present at equilibrium. onstant expression, K, for the following reactions: $O(g) + Cl_2(g)$ K = \Rightarrow H ₃ O ⁺ (aq) + F ⁻ (aq) K = ystem at equilibrium at 698K: H ₂ (g) + I ₂ (g) \Leftrightarrow 2HI(g) cd to the equilibrium system at constant temperature: The concentration of H ₂ will: a) Increase						

Question 16 4 Points	HCN is a weak acid - HCN(aq) + H ₂ O(l) \Leftrightarrow H ₃ O ⁺ + CN ⁻ When some OH ⁻ is added to the equilibrium system at constant temperature:					
	The reaction must:	The concentration of CN ⁻ will:				
	d) Run in the forward direction.	d) Increase				
	e) Run in the reverse direction.	e) Remain the same				
	f) Remain the same .	f) Decrease				
Question 17 4 Points	The production of ammonia is an exothern N ₂ (g) + 3H The production of NH ₃ at equilibrium is fo	l₂(g) ⇔ 2NH₃(g)				
	$\square \text{Removing } N_2(g)$	Cooling the reaction				
	$\Box \text{Adding } H_2(g)$	Heating the reaction				

Exam II Score		