1.01 //.	II A		The Periodic Table										He 2				
1902 1 2 7 6	W/T											IIIA	IVA	VA	VIA	VIIA	4.00
Li B	Ве											В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94 9.	.01											10.81	12.01	14.01	16.00	19.00	20.18
Na M	Vlg											AI	Si	P	S	CI	Ar
11 1	12										5/000000	13	14	15	16	17	18
22.99 24	4.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K C	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19 2	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10 40.	80.0	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb S	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37 3	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47 87.	7.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs B	Ва	La	Hf	Ta	W	Re	Os	lr i	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55 5	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91 137	7.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr R	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	2000		
87 8	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02 226	6.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful (maybe) Constants:

 $1 \text{ amu} = 1.661 \times 10^{-24} \text{g}$

SID		Last		First	
Question	n 1	a) How many signif	icant figures are there in e	each of the following numb	ers?
7 Points	5	0.927790	0.060464	1.00×10 ³	
		•	ggs in a dozen. A farm produled the number of eggs per		
		c) The number 447	7.496 rounded to 4 signific	ant figures is:	
Question 4 Points		a) When 17.2 is su after th	ibtracted from 45.58 , the e decimal point.	result should be reported	with digit(s)
		b) When 85.49 is a digit(s).	divided by 59.6 , the answer	should be reported to sig	nificant
Question 3 Points		• • •	ry textbook is found to have volume of this copy of you		•
		1 g = 1000 mg	1000 mL = 1 L		m = 1 m
		1000 mg = 1 g	$1 \text{ mL} = 1 \text{ cm}^3$		mm = 1 m
		- you may not need to	culation - just set up the c	orrect aimensional analysi	s conversions
		•	×10 ³ mL	·	
Question 6 Points			statements are true (T) or trons are equal in mass, bu		
		b) The mass of a p	proton is about the same a	s the mass of a neutron.	
		c) The electron ac	ts as a buffer zone in the r	nucleus	
Question 6 Points		a) What is the mas31 electrons?	ss number of an atom that a	contains 31 protons, 36 n o	eutrons, and
		b) How many proto and a mass numl	ons and neutrons are in an a ber of 90?	tom that has an atomic nu Neutrons	mber of 39 _ Protons
		c) What is the symelectrons?	nbol of an atom that contair	ns 27 protons, 32 neutron	s, and 27
Question 3 Points			isotopes, lithium-7 , atomic amu. From the atomic weig h		
			ne highest percent natural		
		□ both isotopes h	ave the same percent natu	ral abundance	
		□ lithium-6 has th	ne highest percent natural	abundance	

Question 7 10 Points	The following questions pertain to the periodic table given at the front of this exam:									
	a. The atomic number for the element that is in group 4A and period 2?									
	b. The atomic weight for the element in group 3A and period 4?									
	c. Check the ele	ements that w	ould be expect	ed to have sim	ilar properties?					
	☐ Pb	□ CI	☐ Be	□ I	□ Rn					
	d. What is the s	symbol of the	alkali metal th	at is in period	5?					
	e. Check any of	the following	that are metal :	s? (Z = atomic	number)					
	☐ Fe (Z=26)	□ N (Z= 7)	☐ Br (Z=35)	□ Ba (Z= 56)	□ None of thes	ie				
Question 8 8 Points	Give the correct f o	ormula for the	following poly	atomic ions:						
	a) Phosphide				_					
	b) Phosphate				_					
	c) Dihydrogen	phosphate			_					
	d) Ammonium				_					
Question 9	a. Name the com	pound with the	e formula MgS ?)						
8 Points	b. Name the com	pound with the	e formula Fe(N	O ₂) ₂ ?						
	c. What is the fo	rmula for sod	ium hydrogen (carbonate?						
	d. What is the fo									
	a. What is the fo	initial for cop	por (22) 341/110	i						
Question 10 4 Points	If a grain of sand w	weighs 46 mg ,	what is the we	•	s) of 610 grains? For full credit you mu	st show work.				
						grams				
Question 11	How many moles of	nitrite ions a	re present in a	sample that c	ontains 1.88 mol	es of				
3 Points	Mg(NO ₂) ₂ ?		·	·	For full credit you mu	st show work.				
						moles				

Question 12	How many grams of chromium(III) hydroxide are present in 1.67 moles of this							
4 Points	compound? For full credit you must show work.							
	grams							
Question 13	Balance the following chemical equations using the smallest possible integer							
6 Points	coefficients.							
	a. $Mg_3N_2(s) + M_2O(l) \rightarrow Mg(OH)_2(aq) + MH_3(aq)$							
	b. Write a balanced equation for the complete oxidation reaction that occurs when							
	acetylene (C_2H_2) burns in air							
	C_2H_2 +							
	c. When aqueous solutions of barium hydroxide, $Ba(OH)_2$, and nitric acid, HNO_3 are							
	combined, barium nitrate and water are formed.							
	Ba(OH) ₂ (aq) + HNO ₃ (aq) \rightarrow +							
Question 14	a) Write the electron configuration for the sodium atom:							
10 Points	b) Write the electronic configuration for the argon atom:							
	c) Write the noble gas configuration for vanadium atom:							
	d) The following Lewis diagram represents the valence electron configuration of a							
	main-group element. 👫. If this element is in period 2 ,							
	its valence electron configuration is:							
	e) The element with an electron configuration of $1s^22s^22p^63s^23p^64s^23d^2$ is in							
	group and period							
Question 15	a) What is the maximum number of electrons possible in the shell with $n=4$ in an							
6 Points	atom?							
	b) How many types of orbitals are there in the shell with $n = 2$ in an atom?							
	c) How many 4d orbitals are there in an atom?							
Question 16	Each of the orbitals depicted is from the lowest energy shell possible for its type.							
4 Points	Which one has the lowest shell number (n)?							

Question 17 4 Points	J '	ic table arrange the following elements in S , Po , Te , O	order of increasing
	Smallest		Largest
Question 18 4 Points	Using only the periodi	ic table arrange the following elements in Ca, As, K, Ge	order of decreasing
	Highest		Smallest

Exam I Score		