iA	$1 / 1 / A$	The Periodic Table															I/IIA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$																	He 2
1.01												Mi/	IVA	VA	V/A	V/IA	4.00
Li 3	Be 4											B 5	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{gathered} \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											$\begin{aligned} & \hline \mathrm{Al} \\ & 13 \end{aligned}$	Si	P	S	Cl_{17}	
22.99	24.31	IIM	I/VB	VB	V/B	V/IB	V/IM	V/IM	V/IM	18	$1 / 8$	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{1 4 0 . 1 2}$	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	$(\mathbf{1 4 5})$	150.36	152.97	$\mathbf{1 5 7 . 2 5}$	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	$\mathbf{1 6 8 . 9 3}$	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful (maybe) Constants:
$1 \mathrm{amu}=1.661 \times 10^{-24} \mathrm{~g}$

Question 1 7 Points	a) How many significant figures are there in each of the following numbers? 0.927790 \qquad 0.060464 \qquad 1.00×10^{3} \qquad b) There are 12 eggs in a dozen. A farm produces 747 dozen eggs a month, how should the number of eggs per month be reported? \qquad c) The number $\mathbf{4 4 7 . 4 9 6}$ rounded to $\mathbf{4}$ significant figures is: \qquad
Question 2 4 Points	a) When $\mathbf{1 7 . 2}$ is subtracted from $\mathbf{4 5 . 5 8}$, the result should be reported with digit(s) \qquad after the decimal point. b) When 85.49 is divided by 59.6 , the answer should be reported to significant \qquad digit(s).
Question 3 3 Points	A copy of your chemistry textbook is found to have a volume of $2.81 \times 10^{3} \mathrm{~mL}$. Using unit analysis, show what the volume of this copy of your chemistry textbook is in L .
	$1 \mathrm{~g}=1000 \mathrm{mg}$ $1000 \mathrm{~mL}=1 \mathrm{~L}$ $100 \mathrm{~cm}=1 \mathrm{~m}$ $1000 \mathrm{mg}=1 \mathrm{~g}$ $1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$ $1000 \mathrm{~mm}=1 \mathrm{~m}$
	No need to do the calculation - just set up the correct dimensional analysis conversions - you may not need to fill in all the boxes. $2.81 \times 10^{3} \mathrm{~mL} \longrightarrow \times$ \square
Question 4 6 Points	Decide if the following statements are true (T) or false (F): a) Protons and neutrons are equal in mass, but opposite in charge. \qquad b) The mass of a proton is about the same as the mass of a neutron. \qquad c) The electron acts as a buffer zone in the nucleus \qquad
Question 5 6 Points	a) What is the mass number of an atom that contains 31 protons, 36 neutrons, and 31 electrons? \qquad b) How many protons and neutrons are in an atom that has an atomic number of 39 and a mass number of 90 ? \qquad Neutrons \qquad Protons c) What is the symbol of an atom that contains 27 protons, 32 neutrons, and 27 electrons? \qquad
Question 6 3 Points	Lithium has two stable isotopes, lithium-7, atomic mass of 7.016 amu and lithium-6, atomic mass of 6.015 amu . From the atomic weight of $\mathrm{Li}=6.94$ one can conclude that: lithium-7 has the highest percent natural abundance both isotopes have the same percent natural abundance lithium-6 has the highest percent natural abundance

Question 7 10 Points	The following questions pertain to the periodic table given at the front of this exam: a. The atomic number for the element that is in group 4A and period 2? \qquad b. The atomic weight for the element in group $3 A$ and period 4? \qquad c. Check the elements that would be expected to have similar properties? Pb Cl Be I Rn d. What is the symbol of the alkali metal that is in period 5 ? \qquad e. Check any of the following that are metals? ($Z=$ atomic number) $\mathrm{Fe}(\mathrm{Z}=26)$ $\mathrm{N}(\mathrm{Z}=7)$ $\mathrm{Br}(\mathrm{Z}=35)$ $\mathrm{Ba}(\mathrm{Z}=56)$. None of these
Question 8 8 Points	Give the correct formula for the following polyatomic ions: a) Phosphide \qquad b) Phosphate \qquad c) Dihydrogen phosphate \qquad d) Ammonium \qquad
Question 9 8 Points	a. Name the compound with the formula MgS? b. Name the compound with the formula $\mathrm{Fe}\left(\mathrm{NO}_{2}\right)_{2}$? \qquad c. What is the formula for sodium hydrogen carbonate? \qquad d. What is the formula for copper(II) sulfite? \qquad
Question 10 4 Points	If a grain of sand weighs 46 mg , what is the weight (in grams) of 610 grains? For full credit you must show work. grams
Question 11 3 Points	How many moles of nitrite ions are present in a sample that contains 1.88 moles of $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$? For full credit you must show work. moles

Question 12
4 Points

How many grams of chromium(III) hydroxide are present in 1.67 moles of this compound?

For full credit you must show work.

Question 13
6 Points

Question 14 10 Points

Balance the following chemical equations using the smallest possible integer coefficients.
(
a. __ Mg_{3}
2 (s) \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
\rightarrow \qquad $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{aq})+$ \qquad $\mathrm{NH}_{3}(\mathrm{aq})$
b. Write a balanced equation for the complete oxidation reaction that occurs when acetylene $\left(\mathrm{C}_{2} \mathrm{H}_{2}\right)$ burns in air..

c. When aqueous solutions of barium hydroxide, $\mathrm{Ba}(\mathrm{OH})_{2}$, and nitric acid, HNO_{3} are combined, barium nitrate and water are formed.
$\ldots \mathrm{Ba}(\mathrm{OH})_{2}(\mathrm{aq})+\ldots \mathrm{HNO}_{3}(\mathrm{aq}) \quad \rightarrow \ldots \ldots+\ldots$
a) Write the electron configuration for the sodium atom:
b) Write the electronic configuration for the argon atom:
c) Write the noble gas configuration for vanadium atom:
d) The following Lewis diagram represents the valence electron configuration of a main-group element. X: If this element is in period 2, its valence electron configuration is:
e) The element with an electron configuration of $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$ is in group \qquad and period .

Question 15 6 Points

Question 16
4 Points
a) What is the maximum number of electrons possible in the shell with $n=4$ in an atom? \qquad
b) How many types of orbitals are there in the shell with $\boldsymbol{n}=2$ in an atom?
c) How many 4d orbitals are there in an atom?

Each of the orbitals depicted is from the lowest energy shell possible for its type. Which one has the lowest shell number (n)?

Question 17 4 Points	Using only the periodic table arrange the following elements in order of increasing atomic radius: $\mathrm{S}, \mathrm{Po}, \mathrm{Te}, \mathrm{O}$
	Smallest Largest
Question 18 4 Points	Using only the periodic table arrange the following elements in order of decreasing ionization energy: $\mathrm{Ca}, \mathrm{As}, \mathrm{K}, \mathrm{Ge}$
	Highest \quad Smallest

Exam I Score \square

