
IA H 1	The Periodic Table										VIIIA He 2						
1.01	IIA	1										IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be	ĺ.										В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	l,										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg	ľ										AI	Si	P	S	CI	Ar
11	12											13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	/B	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup		2012 N.	203
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
			9775	10767 710	(4)		- 200	tota mil	375 100	300		ST02 17	100				

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Ιb	Dy	Но	Er	l m	Υb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Approximate Single and Multiple Bond Lengths*

				s	ingle I	Bond Le	engths				
	Н	С	N	О	F	Si	P	s	Cl	Br	I
H	74	110	98	94	92	145	138	132	127	142	161
C		154	147	143	141	194	187	181	176	191	210
N			140	136	134	187	180	174	169	184	203
o				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
P							220	214	209	224	243
S								208	203	218	237
Cl									200	213	232
Br										228	247
I											266
	Multiple Bond Lengths										
			C=C	134	. (C≡C	121				
			C=N	127		C≡N	115				
			C=O	122		C≡O	113				
			N=0	115	. 1	N≡O	108				
_											

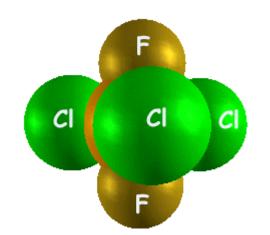
^{*}In picometers (pm); $1 \text{ pm} = 10^{-12} \text{ m}$.

Some Average Single- and Multiple-Bond Energies*

	Single Bonds										
	Н	\mathbf{C}	N	О	F	Si	P	S	Cl	Br	I
H	436	414	389	464	569	293	318	339	431	368	297
\mathbf{C}		347	293	351	439	289	264	259	330	276	238
N			159	201	272		209		201	243?	
O				138	184	368	351		205		201
F					159	540	490	285	255	197?	
Si						176	213	226	360	289	
P							213	230	331	272	213
S								213	251	213	
Cl									243	218	209
Br										192	180
I											151
				M	ultiple	Bond	s				
	N=	N	4	418	C=	=C			61	1	
	N≡			946	C≡				83		
	N=0			590		O (in	0=0	C=O			
	C=1			891		O (as					
	o=			498	C≡			-	107		

^{*}In kilojoules per mole.

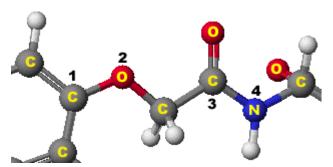
SID	Last	First					
Question 1 10 Points	Using noble gas notation, write the electron co 1. Ni 2. Cr 3. Fe ²⁺						
	The rare earth elements, or lanthanides exist the electron configuration of: 1. Eu 2. Eu ³⁺	as +3 ions. Using the noble gas notation, show					
Question 2 5 Points	Arrange the following elements in order of increasing size, by ranking then from 1 (smalle to 5 (largest)	st) AI K Na C					
Question 3 4 Points	Arrange the following elements in order of increasing ionization energy, by ranking them from 1 (least) to 4 (greatest)	S O F He					
Question 4 4 Points	Consider the elements Na, O, F and Cl: 1. Which element has the greatest electronegativity? 2. Which element has the greatest metallic character?						
Question 5 16 Points	Draw the <u>best</u> Lewis Dot structure for the fol	lowing F₂CO					
	BCI ₃	IBr ₂ ⁻					


Question 6 6 Points	:ö—ö=ö	What is the formal charge on the oxygen atoms on the Lewis Dot Structure depicted on the left.								
	1 2 3	O1:	O2:	O3:						
Question 7 12 Points	Draw all <u>reasonab</u>	o <mark>le</mark> resonance structure	for FNO ₂.							
	Circle the correct answer: Average bond length table is on the front page of this exam. The F to N bond length is expected to be: The N to O bond length is expected to be:									
	1. > 134 pm 2. < 134 pm 3. = 134 pm		2. > 13 3. = 11	1. = 136 pm 2. > 136 pm 3. = 115 pm 4. > 115 pm						
Question 8 6 Points	Phosgene, Cl_2CO is a highly toxic gas. Using the bond energies given on the front page of this exam, estimate the enthalpy change for the reaction of carbon monoxide and chlorine to produce phosgene.									
	$CO(g) + Cl_2(g) = Cl_2CO(g)$									
Question 9	Give the electron	pair geometry and the	molecular geome	try for the following.						
10 Points		Electron Pai	r Geometry	Molecular Geometry						
	1. CH ₂ Cl ₂									
	2. NO ₂ -									

3. NO₂⁺

4. SF₄

5. BrF₅


Question	10
6 Points	

The geometry of PF_2Cl_3 is depicted on the left. Note that the Chlorine atoms occupy the trigonal planar portion of this geometry.

- 1. Why do you think this is?
- 2. What molecular property of this molecule would further verify the structure depicted?

Question 11
8 Points

What is the bond angle about the **numbered** atoms

- 1. _____
- 2.
- 3. _____
- 4.

Question 12 Classify each of the following molecules as either polar or non-polar.

8 Points

- 1. CH₂Cl₂ _____
- 3. I₃-
- 2. NH₃ _____
- 4. N₂

Question 13 Which of the following would you anticipate as being the **least soluble** in water.

5 Points [Circle your choice]

1. Sodium nitrate

3. Hydrochloric acid

2. carbon disulfide

4. Ammonia

Briefly justify your choice.

	F	T F : 4 !: 6 ::	
		n I Extra Credit Question bsolutely correct to obtain the bonus	5 nointe
	700 must get un five u	bsolutely correct to obtain the bonds	o points
Fill in	the name or the formula for the fo	ollowing ionic salts	
	Sodium hydrogen carbonate		
		Fe(ClO ₂) ₃	
	Potassium dichromate	1 5(51-52)3	
3. 4.		AI(NO ₂) ₃	
		AI(INO ₂) ₃	
٥.	Sodium nitride		
	De	o Not Write Below This Line	
	Exam II Score		