Crie	5111 -					•	Opin	ng c	-000												vv	neiun
	IA																				VIII	A
	н	1		-	Th		0	in	di	с Т	'ah										H	
	1	11110		2	ille	; F	e	10	u	CI	ab	ie									2	
	.01	IIA	-											r	IIIA	IVA	Vi		VIA	VIIA	4.0	_
	Li	Be													в	С	N		0	F	N	<u> </u>
6	3 5.94	4 9.01													5 10.81	6 12.01	14.	100	8 16.00	9 19.00	20.	10.5
	Na	Mg													AI	Si	F	_	S	CI	A	_
	11	12													13	14	1		16	17	18	8
1.2.2	2.99	24.31	IIIB	IVB	VB	VIB	V.	IIB	VIIIB	VIIIB	VIIIB	IB.		llB 👘	26.98	28.09		-	32.07	35.45	39.	
	K	Ca	Sc	Ti	V	Cr	N	/In	Fe	Co	Ni	Cu		Zn	Ga	Ge	A	s	Se	Br	K	r
1.11	19	20	21	22	23	24		25	26	27	28	29		30	31	32	3		34	35	36	
	9.10	40.08	44.96	47.88	50.94	52.0	-		55.85	58.93	58.69	63.55	_	5.39	69.72	72.61	-	_	78.96	79.90	83.	_
	Rb 37	Sr 38	Y 39	Zr 40	Nb 41	42		13	Ru 44	Rh 45	Pd 46	Ag 47		Cd 48	1n 49	Sn 50	5		Te 52	53	X 54	
1.1	5.47	87.62	88.91	91.22	92.91	95.9		-		102.91	106.42	107.8	7 11		114.82		-	-		126.90	1.00	0.00
	Cs	Ba	La	Hf	Та	W	-	Re	Os	Ir	Pt	Au	-	Hg	TL	Pb	В	_	Po	At	R	n
	55	56	57	72	73	74		75	76	77	78	79	100	80	81	82	8	-	84	85	86	
	32.91		138.91				_		190.2	192.22	195.08	197.9	-		204.38	207.2	_		(209)	(210)	(22)	2)
	Fr	Ra	Ac	Rf	Db	Sg		Bh	Hs	Mt	Ds	Rg		Jub	Uut	Uuq						
	87 23.02	88 226.03	89 227 03	104 (261)	105 (262)	106		07 62)	108 (265)	109 (266)	110 (271)	111 (272)		112 285)	113 (284)	114 (289)	(28					
22		220.00	221.00	1 (201)	(202)	200	/ 112	027	(200)	(200)	(211)	1212	11	2007	(204)	(200)	1 120	,				
					Ce	Pr	1	d	Pm	Sm	Eu	Gd	1	Tb	Dy	Ho	E		Tm	Yb	L	1
					58	59		50	61	62	63	64		65	66	67	6		69	70	71	
					140.12		_	4.24	(145)	150.36		157.2	-		162.50		_			173.04	<u> </u>	_
					Th	Pa	S	U	Np	Pu	Am	Cm		Bk	Cf	Es	F		Md	No	L	
					90 232.04	91		92	93 237 05	94 (240)	95 243.06	96 (247)		97 248)	98 (251)	99 252.08	10		101 (257)	102 259.10	10 262.	
						19	10	1	5		2 43.00						99	1997	100		12	
		Avera	ge Si	ngle B	ond Le	ength	s (Pi	com	eters)		A	ver	age	Single	Bon	d En	ergi	es (k.	J per	mole	e)
	н	с	м	~ F	c :	Б		~	в.,	I		ы	~	м	~	F	e:			~	D .,	
ы	74			O F 94 ∣92	Si 145	P 138	S 132	CI 127	Br 142	161	ы	H 436	С 414	N 1 389	0 464	F 569	Si 293	P	S 339	CI 431	Br	207
н с	/4	154		43 14		187	181	12/		210	н с		347				293	264			276	238
Ň		134		36 13	_	180	174	169		203	N		547	159		+	209	204		201		230
0				32 13							0			100	138		368			205	240	201
F				12					178		F			_	100			<u> </u>			197	201
Si									231		Si			-		100				360		
P									224		P			_						331		213
s									218		s			-						251		
CI									213		CI			_						243		209
Br										247	Br											180
I										266	1											151
		1 1	1	1	I	1 1		1	1		-	1		I	I			1	1	1 1		
Average Multiple Bond Lengths (Picometers)								Av	era	ige N	lultipl	e Bor	nd Er	nerg	ies (k	(J per	mol	e)				
C = C 134 C ≡ C 121										N =	= N	418	3	c=	- C	611						
		-	C =			C≡		115				N =		946		C≡		837	_			
		-	C =			C≡		113				N =		590				803		In CO	2 O I	lv
		-	N =			N=		108	_			C =		89		C=		745				1
				I								0=		498		C≡		1075				
				1 nm =	1-10-1	2 m								I				1				

Orbital Energies ns, (n-1)d, (n-2)f, np

 $1 \text{ pm} = 1 \times 10^{-12} \text{ m}$

SID	Last	First
Question 1 10 Points	Using noble gas notation, write the electron 1. Co 2. Cu 3. Fe ³⁺ 4. I ⁻ 5. Dy	n configuration for the following: (Dy = Element 66)
Question 2 5 Points	Arrange the following elements in order of increasing size , by ranking then from 1 (sm to 5 (largest)	allest) Cs Ba Si Ga N
Question 3 5 Points	Arrange the following elements in order of ionization energy , by ranking then from 1 (greatest) to 5 (smallest)	N Si K Al Ca
Question 4 5 Points	Arrange the following elements in order of metallic character , by ranking then from 1 (smallest) to 5 (greatest)	N Si K Al Ca
Question 5 15 Points	Draw the <u>best</u> Lewis Dot structure for the N_2	following CIO3 ⁻
	BeCl ₂	XeF₄
	HCN	

I

5 1			w them.							
2. The bond 0-0-0 bo	ond angle is a	pproximately:								
3. The O to O bond en	3. The O to O bond energy in kJ per mole is:									
a) = 498	b) > 498	c) = 138	d) >138	e) <138						
The formal charge on the carbon and oxygen atoms in CO are:										
<i>C</i> :		O:	_							
Methane when combusted produces carbon dioxide and water according to: CH ₄ (g) + 2O ₂ = CO ₂ (g) + 2H ₂ O(g) Estimate the amount of energy produced upon the combustion of 1 mole of CH ₄ ?										
	 The molecule has tw The bond O-O-O bo The O to O bond er a) = 498 The formal charge on the C: Methane when combusted CH4(c) 	 The molecule has two resonance is The bond O-O-O bond angle is and The O to O bond energy in kJ pereceptor (a) = 498 (b) > 498 The formal charge on the carbon and ose C: Methane when combusted produces carbon (CH4(g) + 2O2 = CO2 	 2. The bond O-O-O bond angle is approximately: 3. The O to O bond energy in kJ per mole is: a) = 498 b) > 498 c) = 138 The formal charge on the carbon and oxygen atoms in C:	 The molecule has two resonance structure. Draw them. The bond O-O-O bond angle is approximately: The O to O bond energy in kJ per mole is: (Circle the						

28 Points

e following questi			
Α	B	С	D
÷Ĕ—ĊĊ	:ö: I	ö=s=ö	- či - p. či.
:F:	: <u>ö</u> —ci—ö:	<u>0</u> =3-0	:CI—Be—CI:
	:0:		
E	F	G	н
:Ĕ─Š ^{∕Ĕ:} `Ĕ: !E:	: <u>F</u> — <u>S</u> — <u>F</u> :	;;; ;; ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;	:F—Xe—F:
	cture(s) whose only bond ar ctures(s) whose epg is/are	-	
	tron pair geometry (epg) f		
		C:	
		F:	
4. Give the mole	ecular geometry for:		
A:		E:	
G:		H:	
5. Two of the a	bove molecules have an ang	ular/bent molecular geom	etry. They are:
	Which one has t	he largest bond angle?	
6. Label the fol	lowing molecules as either r	oolar (P) or non polar (NP)
A:	C: D:	F: H:	

Do Not Write Below This Line

Exam II Score		
---------------	--	--