iA	$1 / \mathrm{A}$	The Periodic Table															V/IMA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$																	He 2
1.01												IIIA	IVA	VA	V/A	V/IIA	4.00
$\begin{gathered} \hline \mathrm{Li} \\ 3 \end{gathered}$	Be 4											B 5	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{gathered} \mathrm{Na} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											AI 13	Si 14	P	S	Cl_{17}	
22.99	24.31	Im	IVB	VB	V/B	V/IB	V/me	V/IMB	V/IIB	18	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce 58 140.12	$\begin{array}{\|c\|} \hline \mathrm{Pr} \\ 59 \\ \mathbf{1 4 0 . 9 1} \\ \hline \end{array}$	Nd 60 144.24	$\begin{array}{\|c\|} \hline \text { Pm } \\ 61 \\ (145) \end{array}$	$\begin{array}{\|c} \hline \text { Sm } \\ 62 \\ 150.36 \end{array}$	Eu 63 152.97	$\begin{array}{c\|} \hline \text { Gd } \\ 64 \\ 157.25 \end{array}$	$\begin{array}{\|c\|} \hline \text { Tb } \\ 65 \\ 158.93 \\ \hline \end{array}$	$\begin{gathered} \hline \text { Dy } \\ 66 \\ 162.50 \end{gathered}$	$\mathrm{H} \circ$ 67 164.93	$\begin{array}{\|c\|} \hline \mathrm{Er} \\ 68 \\ 167.26 \end{array}$	$\begin{array}{\|c} \hline \mathrm{Tm} \\ 69 \\ 168.93 \end{array}$	Yb 70 173.04	$\begin{array}{\|c\|} \hline \text { Lu } \\ 71 \\ 174.97 \end{array}$
Th	$\begin{aligned} & \mathrm{Pa} \\ & 91 \end{aligned}$	$\begin{aligned} & \mathrm{U} \\ & 92 \end{aligned}$	$\begin{gathered} \mathrm{Np} \\ 93 \end{gathered}$	$\begin{gathered} \mathrm{Pu} \\ 94 \end{gathered}$	Am	$\begin{gathered} \mathrm{Cm} \\ 96 \end{gathered}$	$\begin{gathered} \mathrm{Bk} \\ 97 \end{gathered}$	$\begin{aligned} & \hline \text { Cf } \\ & 98 \end{aligned}$	$\begin{gathered} \hline \text { Es } \\ 99 \end{gathered}$	$\begin{aligned} & \hline \text { Fm } \\ & 100 \end{aligned}$	$\begin{aligned} & \hline \text { Md } \\ & 101 \end{aligned}$	$\begin{aligned} & \text { No } \\ & 102 \end{aligned}$	Lr 103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Average Single Bond Lengths (Picometers)

	H	C	N	\bigcirc	F	Si	P	S	CI	Br	1
H	74	110	98	94	92	145	138	132	127	142	161
C		154	147	143	141	194	187	181	176	191	210
N			140	136	134	187	180	174	169	184	203
0				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
P							220	214	209	224	243
S								208	203	218	237
Cl									200	213	232
Br										228	247
I											266

Average Multiple Bond Lengths (Picometers)

$\mathrm{C}=\mathrm{C}$	134			
$\mathrm{C}=\mathrm{N}$	127			
$\mathrm{C}=\mathrm{O}$	122			
$\mathrm{~N}=\mathrm{O}$	115	\quad	$\mathrm{C} \equiv \mathrm{C}$	121
:---	:---			
$\mathrm{C} \equiv \mathrm{N}$	115			
$\mathrm{C} \equiv \mathrm{O}$	113			
$\mathrm{~N} \equiv \mathrm{O}$	108			

$1 \mathrm{pm}=1 \times 10^{-12} \mathrm{~m}$

Average Single Bond Energies (kJ per mole)

	H	C	N	0	F	Si	P	S	Cl	Br	1
H	436	414	389	464	569	293	318	339	431	368	297
C		347	293	351	439	289	264	259	330	276	238
N			159	201	272		209		201	243	
0				138	184	368	351		205		201
F					159	540	490	285	255	197	
Si						176	213	226	360	289	
P							213	230	331	272	213
S								213	251	213	
CI									243	218	209
Br										192	180
1											151

Average Multiple Bond Energies (kJ per mole)

$\mathrm{N}=\mathrm{N}$	418			
$\mathrm{~N} \equiv \mathrm{~N}$	946			
$\mathrm{~N}=\mathrm{O}$	590			
$\mathrm{C} \equiv \mathrm{N}$	891			
$\mathrm{O}=\mathrm{O}$	498	\quad	$\mathrm{C}=\mathrm{C}$	611
:---	:---	:---		
$\mathrm{C} \equiv \mathrm{C}$	837			
$\mathrm{C}=\mathrm{O}$	803			
$\mathrm{C}=\mathrm{O}$	745			
$\mathrm{C} \equiv \mathrm{O}$	1075			

\qquad
\qquad

Question 1 Using noble gas notation, write the electron configuration for the following:

1. Co
2. Cu
3. Fe^{3+}
4. I^{-} \qquad
5. Dy \qquad (Dy = Element 66)

Question 2 Arrange the following elements in order of 5 Points increasing size, by ranking then from 1 (smallest) to 5 (largest)

Question 3 Arrange the following elements in order of 5 Points ionization energy, by ranking then from 1 (greatest) to 5 (smallest)

Question 4 Arrange the following elements in order of 5 Points metallic character, by ranking then from 1 (smallest) to 5 (greatest)

N
\square
Si

K
Al

Question 5 Draw the best Lewis Dot structure for the following 15 Points

N_{2}	$\mathrm{ClO}_{3}{ }^{-}$
BeCl_{2}	XeF_{4}
HCN	

Question 6 The following questions all relate to Ozone, O_{3}

12 Points
6 Points

3 Points

3 Points

1. The molecule has two resonance structure. Draw them.
2. The bond $O-O-O$ bond angle is approximately:
3. The O to O bond energy in kJ per mole is:
(Circle the best choice)
a) $=498$
b) >498
c) $=138$
d) >138
e) <138

Question 7 The formal charge on the carbon and oxygen atoms in CO are:

6 Points

Question 8 Methane when combusted produces carbon dioxide and water according to:
6 Points
C : \qquad O: \qquad

Estimate the amount of energy produced upon the combustion of 1 mole of CH_{4} ?

Question 9 8 Points

What is the bond angle about the numbered atoms?

1. \qquad
2. \qquad
3. \qquad
4. \qquad

Question 10 28 Points

The following questions refer to the molecules depicted below.

A		$\ddot{\mathrm{O}}=\ddot{\mathrm{s}}=\mathrm{O}$:C̈l—Be一C̈l:
E	: :	G	H $\text { : } \mathrm{F}-\dot{+} \mathrm{Xe}-\overrightarrow{\mathrm{F}}:$

1. List the structure(s) whose only bond angle is $\sim 180^{\circ}$
2. List the structures(s) whose epg is/are tetrahedral:
3. Give the electron pair geometry (epg) for:

A: \qquad $C:$ \qquad
D: \qquad F: \qquad
4. Give the molecular geometry for:

A: \qquad E: \qquad
G: \qquad H: \qquad
5. Two of the above molecules have an angular/bent molecular geometry. They are:
\qquad
\qquad .. Which one has the largest bond angle? \qquad
6. Label the following molecules as either polar (P) or non polar (NP)
A: \qquad
C: \qquad
D: \qquad
F: \qquad
H: \qquad

Do Not Write Below This Line

