iA	$1 / 1 / A$																V/IIA
$\begin{aligned} & \mathrm{H} \\ & 1 \end{aligned}$		The Periodic Table															He 2
1.01												IIIA	IVA	VA	V/A	V/IA	4.00
$\underset{3}{\mathrm{Li}}$	Be 4											B	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{aligned} & \mathrm{Na} \\ & 11 \end{aligned}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											AI 13	Si	P	S	Cl_{17}	
22.99	24.31	\ldots	IVB	VB	V/B	V/IIS	V/igs	V/İB	V/IM	18	$1 / 8$	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	${ }^{85}$	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{1 4 0 . 1 2}$	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	150.36	152.97	$\mathbf{1 5 7 . 2 5}$	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	$\mathbf{1 6 8 . 9 3}$	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful And Not So Useful Information:

$N=6.023 \times 10^{23} \mathrm{~mol}^{-1}$

$$
c=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1}
$$

$h=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s}$.

\qquad
\qquad

Question 1

1. Give the number of significant figures in: $\mathbf{1 6 0 0}$
2. $[23.56-2.3] / 1.248 \times 10^{3}$

Report the answer in the correct number of significant figures:
3. Diamond has a density of $3.513 \mathrm{~g} / \mathrm{cm}^{3}$. If a carat equals 0.200 g .

What is the volume in cm^{3} of a 1.32-carat diamond?

Question 2 A neutral atom has 92 protons and 146 neutrons. Fill in the three 6 Points blanks to complete the atomic symbol

Question 3 Which if any of the following species has the same number of neutrons as it does electrons? Circle the correct answer(s).
${ }^{47}{ }_{24} \mathrm{Cr}^{+}$
${ }^{24} \mathrm{Mg}$
${ }^{59} \mathrm{Co}^{2+}$
${ }^{35} \mathrm{Cl}^{-}$
${ }^{125}{ }_{50} S n$

Question 4 Use the Periodic Table accompanying this exam to answer the following questions: 10 Points

1. Name the only diatomic gas in Period 4
2. Symbol for the heaviest Alkali Earth element. \qquad
3. Symbol for transition metal in Group VIB, Period 6. \qquad
4. The Actinides belong to what Period?
5. Group VIIIA are collectively referred to as:

Question 6 Give the sign and magnitude of the charge associated with the following: 8 Points

1. Hydrogen sulfate ion
2. Selenide ion
\qquad
3. Chromate ion
\qquad
\qquad
4. Group VIA elements \qquad
Question 7 Sb has two naturally occurring isotopes:
4 Points

Isotope ${ }^{121} \mathrm{Sb}$	Exact Mass	Natural Abundance
${ }^{123} \mathrm{Sb}$	120.904	57.30%
	122.904	42.70%

What is the average atomic mass of Sb ? (Give your answer to 3 decimal places)

Question 8 6 Points

1. What amount in moles, is represented by 3.00 g of $\mathrm{P}_{2} \mathrm{~F}_{4}$? [Show Work]
2. What is the percent carbon in CCl_{4} ?

Question 9 Mesitylene is composed of carbon and hydrogen only. It is $89.93 \% C$ and its molar mass 6 Points is $120.19 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of mesitylene?
[Show All Work]

Question 10 Using the smallest whole number integers possible, balance the following chemical 4 Points equations.

1. $\ldots \mathrm{AgNO}_{3}(\mathrm{aq})+\ldots \mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{aq})=\quad$ __ $_{\mathrm{Ag}}^{2} \mathrm{CrO} 4(\mathrm{~s})+\ldots \mathrm{KNO}_{3}(\mathrm{aq})$
2. $\ldots \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g})=\quad=\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\ldots \mathrm{CO}_{2}(\mathrm{~g})$

Question 11 Give the correct name for each of the following ionic compounds.
4 Points

1. $\mathrm{Ca}\left(\mathrm{NO}_{2}\right)_{2}$
2. $\mathrm{Na}_{2} \mathrm{~S}$
3. $\mathrm{Fe}(\mathrm{OH})_{3}$
4. $\mathrm{K}_{2} \mathrm{CrO}_{4}$

Question 12 Give the correct formula for each of the following ionic compounds.
4 Points

1. Ammonium carbonate
2. Potassium chlorite
3. Aluminum oxide
4. Perchloric acid

The yellow region has greater energy than the \qquad region while the green region has a \qquad frequency than the yellow region. The blue region has the
\qquad frequency of all the regions depicted.

Question 14 A chemical reaction can be initiated by light that carries energy of $5.34 \times 10^{5} \mathrm{~J}_{\mathrm{Jol}}{ }^{-1}$. Only light less than a certain wavelength will initiate the reaction.
What is the longest wavelength, in meters, that can deliver the required energy? [Show All Work]

Question 15
4 Points

Question 16
6 points

1. Potassium has three naturally occurring isotopes $\left({ }^{39} \mathrm{~K},{ }^{40} \mathrm{~K},{ }^{41} \mathrm{~K}\right) .{ }^{40} \mathrm{~K}$ has a very low natural abundance. Which of the other two is the more abundant?
2. Circle the expected approximate abundance of the more abundant isotope?
$<30 \%>30 \% \quad<60 \% \quad>60 \%$ <90\%
3. How many orbitals are there with an n value equal to 3 ?
4. How many nodal surfaces are associated with a 4 s orbital?
5. One of the following wave functions (orbitals) is not a solution of the Schrodinger Equation. Circle the one that is not.

2s
$2 p$
7s
3d
4f
59
2d
$9 p$

Question 17
4 points

1. The orbitals depicted above are what type:
2. The n value of these orbitals is:

Question 18
10 Points

1. Give the complete electronic configuration for:

Cl :
Ca: \qquad
2. Give the Noble Gas (Valence) configuration for

S:
K:
3. Give the symbol(s) of the Period 4 transition metals (elements 21-30) that is/are diamagnetic: \qquad

Do Not Write Below This Line

