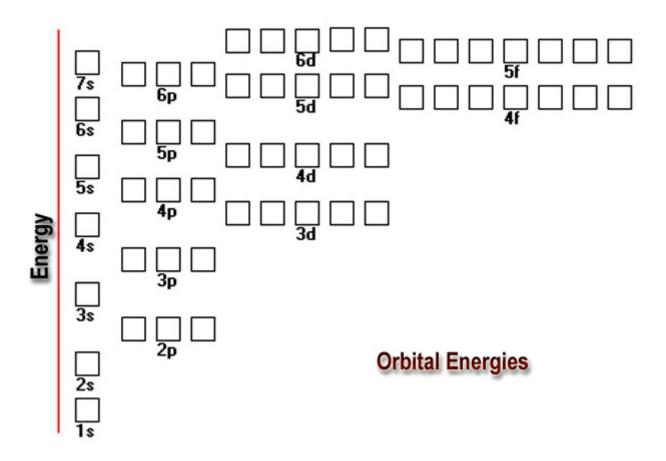
Chem 111 Summer 2004 Exam II Whelan

H	The Periodic Table												VIIIA He				
1.01	IIA	_										IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											В	С	N	0	F	Ne
3	4											5	6	. 7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											Al	Si	P	S	CI	Ar
11	12											13	14	15_	16	17	18
22.99	24.31	MB	IVB	VB	VIS	VIIB	VIIIB	VIIIB	VIIIB	IB.	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	11	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ва	La	Hf	Ta	W	Re	Os	lr.	Pt	Au	Hg	T	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
87	88	89	104	105	106	107	108	109									
223.02	226.03	227.03	(261)	(262)	(263)	(262)	(265)	(266)									


Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Useful And Not So Useful Information:

 $\lambda v = c$ E = hv $E = mc^2$

1 kJ = 1000 J $N = 6.023 \times 10^{23} \text{ mol}^{-1}$ c = 2.998×10⁸ m.s⁻¹

 $h = 6.626 \times 10^{-34} \text{ J.s.}$

Some Approximate Single and Multiple Bond Lengths*

	Single Bond Lengths											
	Н	С	N	О	F	Si	P	s	Cl	Br	I	
Н	74	110	98	94	92	145	138	132	127	142	161	
C		154	147	143	141	194	187	181	176	191	210	
N			140	136	134	187	180	174	169	184	203	
O				132	130	183	176	170	165	180	199	
F					128	181	174	168	163	178	197	
Si						234	227	221	216	231	250	
P							220	214	209	224	243	
S								208	203	218	237	
Cl									200	213	232	
Br										228	247	
I											266	
			1	Multiple	Bond	Lengths	5					
			C=C	134		C≡C	121					
			C=N	127		C≡N	115					
			C=O	122		C≡O	113					
			N=O	115		N≡O	108					

^{*}In picometers (pm); $1 \text{ pm} = 10^{-12} \text{ m}$.

Some Average Single- and Multiple-Bond Energies*

Single Bonds											
	Н	\mathbf{C}	N	O	F	Si	P	S	Cl	Br	I
H	436	414	389	464	569	293	318	339	431	368	297
\mathbf{C}		347	293	351	439	289	264	259	330	276	238
N			159	201	272		209		201	243?	
O				138	184	368	351		205		201
\mathbf{F}					159	540	490	285	255	197?	
Si						176	213	226	360	289	
P							213	230	331	272	213
S								213	251	213	
Cl									243	218	209
Br										192	180
I											151
				M	ultiple	Bond	s				

N=N 418 $C=C$ 61	11
N≡N 946 C≡C 85	37
N=O 590 C=O (in O=C=O) 80)3
$C \equiv N$ 891 $C = O$ (as in $H_2C = O$) 74	15
O=O (in O_2) 498 C=O 107	75

^{*}In kilojoules per mole.

Give the noble gas electronic configuration for the following:									
1. P ³⁻									
2. Co									
3. Cr									
4. Fe ²⁺									
Consider the two elements lithium and be	eryllium:								
 Greatest metallic character? 									
2. Highest ionization energy?									
3. Least electronegative?									
Consider the two elements fluorine and chlorine 4. Greatest electron affinity?									
Draw the <u>best</u> Lewis Dot structures for the following:									
NO ₂ ⁺	SF ₄								
BCI ₃	I ₃ -								
	1. P³- 2. Co 3. Cr 4. Fe²+ Consider the two elements lithium and be 1. Greatest metallic character? 2. Highest ionization energy? 3. Least electronegative? Consider the two elements fluorine and consider the two								

Question 4 5 Points	Which of the following molecuclosest to 136pm? [Circle your choice]	ıles is expected to have a nitro	gen to oxygen bond length
	NO⁺	NO_2^+	NO ₂ -
4 Points	Briefly justify your choice?		
Question 5		ty N-N-O, has three resonance	
9 Points	1.	2.	3.
6 Points	Using formal charges can you justify your answer.	eliminate one of these structu	res? If so which one? Briefly
Question 6 6 Points	Using the average bond estimonic combustion of 1 mole of H ₂ CO	ate the amount of energy that ?	would be produced by the

 $H_2CO(g) + O_2(g) = H_2O(g) + CO_2(g)$

Question 7

The following questions refer to the molecules depicted below.

he following questions refer to the molecules depicted below.										
A	В	С	D							
: <u>F</u> —ci—F: - - :F:	:ö: ¬-	<u>ö</u> ===ö	:F: :F — Si—F: :F:							
E	F	G	Н							
:F.—\$ F: F:	: <u>F</u> — <u>S</u> — <u>F</u> :	:F: /F: :F:	:Ö—Ö=Ö 1 2							

1	What	is	the	electron	pair	geometry	of
Δ.	WILL	13	1110	election	Pull	geomeny	01

Α			
A			

C

F

G _____

н _____

3. What is the formal charge on the oxygen atoms in H

O1: ___

02: ___

4. What is the oxidation number on the oxygen atoms in H

O1: ___

02: ___

5. What is the **bond angle** about the central atom in:

C: _____

F: _____

H:

6. Which, if any, of the above are non-polar?