i A	IIA	The Periodic Table															$1 / \mathrm{IFA}$
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$																	He 2
1.01												IIIA	IVA	VA	VIA	V/IA	4.00
$\begin{gathered} \mathrm{Li} \\ 3 \\ 6.94 \end{gathered}$	$\begin{gathered} \mathrm{Be} \\ 4 \end{gathered}$											B 5 10.81	C ${ }^{\text {C }}$	N 7 7 14.01	0 8 16.00	F 9 19	Ne 10 20.18
11	12											13	14	15	16	17	18
22.99	24.31	$\ldots 8$	IVB	VB	V/B	V//B	V / m	V/INB	V/w	18	/1B	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce 58 140.12	Pr 59 140.91		$\begin{array}{\|c\|} \hline \text { Pm } \\ 61 \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Sm } \\ 62 \\ 150.36 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Eu } \\ 63 \\ 152.97 \end{array}$		$\begin{array}{\|c\|} \hline \text { Tb } \\ 65 \\ 158.93 \\ \hline \end{array}$	$\begin{array}{c\|} \hline \text { Dy } \\ 66 \\ 162.50 \end{array}$	$\begin{gathered} \mathrm{Ho} \\ 67 \\ 164.93 \\ \hline \end{gathered}$	Er 68 167.26	$\begin{array}{\|c\|} \hline \text { Tm } \\ 69 \\ 168.93 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Yb} \\ 70 \\ 173.04 \\ \hline \end{array}$	71 174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Solubility Guidelines:

Soluble Ionic Compounds	
1.	All sodium, potassium and ammonium salts are soluble.
2.	All nitrate, acetate, chlorate and perchlorate salts are soluble
3.	All chloride, bromide and iodide salts are soluble. Except those that contain: lead, silver or mercury(I) $\left(\mathrm{Hg}_{2}^{2+}\right)$.
4.	All fluoride salts are soluble. Except those that contain: magnesium, calcium, strontium, barium or lead.
5.	All sulfate salts are soluble. Except those that contain: calcium, silver, mercury(I), strontium, barium or lead.
Not Soluble Ionic Compounds	

Question 1 The following questions refer to the molecules whose Lewis Dot Structure are depicted 24 Points below.

1. The number of molecules whose bonding about the central atom is best described by sp sybridization?
2. The molecule(s) whose bonding about the central atom is best described using $\mathbf{s p}^{2}$ hybrid orbitals?
3. The bonding about the central I atom in B is best described using what type of hybridization?
4. The molecule with the greatest number of pi bonds?
5. The molecule with the greatest number of sigma bonds?
\qquad
\qquad
\qquad
The following questions refer to the O_{3} (Molecule C)
6. The lone pair on the central oxygen atom is best described as being in what type of orbital?
7. The $\mathbf{O}=\boldsymbol{O}$ bond is best described: as a sigma bond formed from the overlap of $a(n)$
\qquad on \mathbf{O} with $a(n)$ \qquad on O; and a pi bond formed by the overlap of $a(n)$
\qquad orbital on O with $a(n)$ \qquad orbital on O.

Question 2 12 Points

Complete the following chemical reactions: (Give the formula for the products)
A. Iron(III) perchlorate + Sodium hydroxide $=$
B. Hydrofluoric acid (HF) + potassium hydroxide $=$ \qquad
C. Cobalt(II) carbonate + hydrochloric acid $=$

With respect to the above reactions:

1. Acid base reaction:
2. Gas forming reaction:
\qquad
3. Precipitation reaction: \qquad

Question 3
12 Points

1. Consider the reaction when aqueous solutions of calcium nitrate and potassium hydroxide are combined. The net ionic equation for this reaction is:
2. Write a net ionic equation for the reaction that occurs when aqueous solutions of lithium hydroxide and hydrocyanic acid (HCN) are combined.
3. Write a net ionic equation for the reaction that occurs when aqueous solutions of sodium carbonate and hydroiodic acid are combined.

Question 4 A sample of ethylene glycol with a mass of 74.0 g at $6^{\circ} \mathrm{C}$ is placed into a perfectly 6 Points insulated container together with 93.0 g of glass at $76^{\circ} \mathrm{C}$. Calculate the final temperature of the sample when thermal equilibrium is reached?

Heat capacities: Glass $=0.84 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad$ Ethylene glycol $=2.41 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Question 5 The Ideal Gas equation, $P V=n R T$, breaks down at high pressures. Why is this?

Question 6 8 Points
21.0 g of LiCl are dissolved in 170.0 g of water in a calorimeter the following data was collected:
Initial Temperature:
$24.4^{\circ} \mathrm{C}$
Final Temperature:
$42.5^{\circ} \mathrm{C}$
Heat capacity of the solution: $\quad 4.184 \mathrm{~J} / g^{\circ} \mathrm{C}$
Calorimeter constant:
$63.9 \mathrm{~J} /{ }^{\circ} \mathrm{C}$

What is the heat of solution for this compound in $\mathrm{J} / \mathrm{mol}$?

Question 7 How many grams of solid barium hydroxide are needed to exactly neutralize 12.1 mL of a 8 Points 0.562 M nitric acid solution? Assume that the volume remains constant.

Question 8 For the following reaction, 4.34 grams of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ are allowed to react with 5.6 12 Points grams of oxygen gas.

$$
\text { benzene }\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)(\mathrm{I})+\text { oxygen }(\mathrm{g})=\text { carbon monoxide }(\mathrm{g})+\text { water }(\mathrm{g})
$$

1. What is the maximum amount in moles of carbon monoxide that can be formed?
2. What is the FORMULA for the limiting reagent?

What amount in grams of the excess reagent remains after the reaction is complete? Grams

Question 9 For the following reaction, 5.61 grams of sulfur are mixed with excess carbon monoxide.

$$
\text { sulfur }(s)+\text { carbon monoxide }(g)=\text { sulfur dioxide }(g)+\text { carbon }(s)
$$

Question 10
8 Points
$\Delta H^{0}{ }_{f} \mathrm{MnO}_{2}(s)=-504.0 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H^{0} \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})=-1675.7 \mathrm{~kJ} / \mathrm{mol}$

What quantity of heat is absorbed or evolved upon the production of 27 g of $\mathrm{Al}_{2} \mathrm{O}_{3}$: $4 \mathrm{Al}(\mathrm{s})+3 \mathrm{MnO}_{2}(\mathrm{~s})=3 \mathrm{Mn}(\mathrm{s})+2 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$

Do Not Write Below This Line

