

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
$\mathbf{1 4 0 . 1 2}$	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Average Single Bond Lengths (Picometers)

	H	C	N	0	F	Si	P	S	Cl	Br	1
H	74	110	98	94	92	145	138	132	127	142	161
C		154	147	143	141	194	187	181	176	191	210
N			140	136	134	187	180	174	169	184	203
0				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
P							220	214	209	224	243
S								208	203	218	237
Cl									200	213	232
Br										228	247
1											266

Average Multiple Bond Lengths (Picometers)

$\mathrm{C}=\mathrm{C}$	134			
$\mathrm{C}=\mathrm{N}$	127			
$\mathrm{C}=\mathrm{O}$	122			
$\mathrm{~N}=\mathrm{O}$	115	\quad	$\mathrm{C} \equiv \mathrm{C}$	121
:---	:---			
$\mathrm{C} \equiv \mathrm{N}$	115			
$\mathrm{C} \equiv \mathrm{O}$	113			
$\mathrm{~N} \equiv \mathrm{O}$	108			

$1 \mathrm{pm}=1 \times 10^{-12} \mathrm{~m}$

Average Single Bond Energies (kJ per mole)

	H	C	N	0	F	Si	P	S	Cl	Br	1
H	436	414	389	464	569	293	318	339	431	368	297
C		347	293	351	439	289	264	259	330	276	238
N			159	201	272		209		201	243	
0				138	184	368	351		205		201
F					159	540	490	285	255	197	
Si						176	213	226	360	289	
P							213	230	331	272	213
s								213	251	213	
Cl									243	218	209
Br										192	180
1											151

Average Multiple Bond Energies (kJ per mole)

$\mathrm{N}=\mathrm{N}$	418			
$\mathrm{~N} \equiv \mathrm{~N}$	946			
$\mathrm{~N}=\mathrm{O}$	590			
$\mathrm{C} \equiv \mathrm{N}$	891			
$\mathrm{O}=\mathrm{O}$	498	\quad	$\mathrm{C}=\mathrm{C}$	611
:---	:---	:---		
$\mathrm{C} \equiv \mathrm{C}$	837			
$\mathrm{C}=\mathrm{O}$	803			
$\mathrm{C}=\mathrm{O}$	745			
$\mathrm{C} \equiv \mathrm{O}$	1075			

Some Useful And Not So Useful Information:
$1 \mathrm{~kJ}=1000 \mathrm{~J}$

$$
\begin{aligned}
& N=6.023 \times 10^{23} \mathrm{~mol}^{-1} \\
& c=2.998 \times 10^{8}{\mathrm{~m} . \mathrm{s}^{-1}}^{\mathrm{h}}=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s} .
\end{aligned}
$$

Orbital Energies $n s,(n-1) d,(n-2) f, n p$

SID \qquad
\qquad Firs \dagger

Question 1 Give the complete electronic configuration for the following:
4 Points

1. S
2. Br \qquad

Question 2 Give the noble gas electronic configuration for the following:
8 Points

1. Rb \qquad 2. Cu \qquad
2. \qquad
3. Fe^{2+} \qquad

Question 3 List the Period 4 elements that are diamagnetic:
6 Points
Question 4 Arrange the following elements in order of 5 Points ionization energy, by ranking then from 1 (greatest) to 5 (smallest)

Question 5 Arrange the following elements in order of 5 Points electronegativity, by ranking then from 1 (least) to 5 (greatest)
s \square

AI

\square
$\mathrm{Rb} \square$
$\mathrm{Rb} \square$
$c \square$
\square

Question 6 Draw the best Lewis Dot structure for the following 10 Points

Question 7 The following questions all relate to $\mathrm{NO}_{2}{ }^{-}$

6 Points
(4 Points)
(2 Points)

1. The molecule has two resonance structure. Draw them.
| 1.
2. The N to O bond length in pm is best described as: (Circle the best choice)
a) $=136$
b) >136
c) $=115$
d) >115
e) <115

Question 8 The formal charge on the carbon and nitrogen atoms in CN^{-}are:

4 Points

Question 9 6 Points
C : \qquad $N:$ \qquad
Methane when combusted produces carbon dioxide and water according to:

$$
2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g})
$$

Estimate the amount of energy produced upon the combustion of 1 mole of $C O$?

Question 10 4 Points

What is the bond angle about the numbered atoms?

1. \qquad
2. \qquad
3. \qquad
4. \qquad

Question 11 The following questions refer to the molecules depicted below.

A	$\text { : }: \vec{F}-\mathrm{S} \text { : }-\ddot{F}:$		D $\mathrm{H}-\mathrm{C} \equiv \mathrm{~N}:$
	$: \mathrm{Br}-\overrightarrow{\mathrm{B}}=\overrightarrow{\mathrm{Br}} \mathrm{~B}^{-}$		

1. List the structure(s) whose only bond angle is $\sim 180^{\circ}$
2. List the structures(s) whose epg is/are trigonal planar:
3. Give the electron pair geometry (epg) for:

B: \qquad C: \qquad
F: \qquad G: \qquad
4. Give the molecular geometry for:
B: \qquad C : \qquad
E: \qquad G: \qquad
5. Label the following molecules as either polar (P) or non polar (NP)
A: \qquad B: \qquad
C: \qquad
D: \qquad
F: \qquad

Question 12 4 Points

A hypothetical molecule has the formula $A B_{3} C_{2}$, where A is the central atom and B and C are elements belonging to the same group. The molecule has a trigonal bipyramid electon pair geometry and is polar. What could you infer about the atomic weight of C versus that of B ?
(1 Point)
In three sentences or less justify your reasoning.
(3 Points) \qquad
\qquad
\qquad

Do Not Write Below This Line

