Chem 111 Summer 2007 Exam III Whelan

IA H			T	⁻ he	Pe	eric	odi	c T	ab	le							VIIIA He 2
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be	Ř										В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	e.										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12	Manager 1										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB.	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	233		
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Solubility Guidelines:

Solu	ble Ionic Compounds							
1.	All sodium, potassium and ammonium salts are soluble.							
2.	All nitrate, acetate, chlorate and perchlorate salts are soluble							
3.	All chloride, bromide and iodide salts are soluble.							
	Except those that contain: lead, silver or mercury(I) (Hg22+).							
4.	All fluoride salts are soluble.							
	Except those that contain: magnesium, calcium, strontium, barium or lead.							
5.	All sulfate salts are soluble.							
	Except those that contain: calcium, silver, mercury(I), strontium, barium or lead.							
Not	Soluble Ionic Compounds							
1.	All hydroxide and oxide salts are not soluble.							
	Except those that contain: sodium, potassium or barium.							
2.	All sulfide salts are not soluble.							
	Except those that contain: sodium, potassium ammonium or barium.							
3.	All carbonate and phosphate salts are not soluble.							
	Except those that contain: sodium, potassium or ammonium.							

Last

First

Question 1 16 Points

The following questions refer to the molecules whose Lewis Dot Structure are depicted below.

Ī	A A	В	С	D
	:F: :F-B-F:	<u>((-);-);-</u>]:	:Ö—Ö=Ö 1 2	:Cl—Be—Cl:

- The number of molecules whose sigma bonding about the central atom is best described by sp hybridization?
- 2. The **molecule(s)** whose bonding about the central atom is best described using sp^2 hybrid orbitals?
- 3. The bonding about the central I atom in B is best described using what type of hybridization?
- 4. The molecule with the greatest number of pi bonds?
- 5. The molecule with the greatest number of sigma bonds?

The following questions refer to the O_3 (Molecule C)

- 6. The lone pair on the central oxygen atom is best described as being in what type of orbital?
- The O=O bond is best described: as a sigma bond formed from the overlap of a(n)
 on O1 with a(n) ____ on O2; and a pi bond formed by the overlap of a(n)
 orbital on O1 with a(n) ___ orbital on O2.

Question 2

Complete the following chemical reactions: (Give the formula for the products)

- A. Iron(III) perchlorate + sodium hydroxide = _____
- B. Hydrofluoric acid (HF) + potassium hydroxide = _____
- C. Cobalt(II) carbonate + hydrochloric acid =

With respect to the above reactions, which one is:

- 1. An acid base reaction:
- 2. A gas forming reaction:
- 3. A precipitation reaction:

Question 3 12 Points	1.			•		f calcium nitrate and for this reaction is	•
	2.		•			t occurs when aqued are combined.	ous solutions of
	3.		-	tion for the r		t occurs when aqueonsbined.	ous solutions of
Question 4 8 Points	insulat	•	together	with 93.0 g of	glass at 7 0	^o C is placed into a p 5 ^o C. Calculate the f	•
	Heat o	capacities:	Glass = C).84 J/g°C	Ethy	lene glycol = 2.41 J	⁻ /g ⁰ C
Question 5 8 Points	collect In So	-	ture: apacity:	24.4°C 4.184 J/g ⁰	F C C	calorimeter the foll inal Temperature: alorimeter constant	42.5°C
					I		J/mol

Question 6 7 Points	How many grams of solid barium hydroxide are needed to exactly neutralize 12.1 mL of a 0.562 M nitric acid solution? Assume that the volume remains constant.
	g
Question 7	For the following reaction, 4.34 grams of benzene (C_6H_6) are allowed to react with 5.6 grams of oxygen gas.
	benzene $(C_6H_6)(I)$ + oxygen (g) = carbon monoxide (g) + water (g)
	1. What is the maximum amount in moles of carbon monoxide that can be formed?
	mol CO
	2. What is the FORMULA for the limiting reagent?
	 What amount in grams of the excess reagent remains after the reaction is complete? Grams

Question 8 7 Points	For the following reaction, 5.61 grams of sulfur are mixed with excess carbon monoxide. The reaction yields 3.16 grams of carbon . What is the percent yield? sulfur (s) + carbon monoxide (g) = sulfur dioxide (g) + carbon (s)
Question 9 6 Points	After a 533 g block of copper absorbs 1,700 J of heat it reaches a temperature of $44.6^{\circ}C$. If the heat capacity of copper is 0.385 J/g. $^{\circ}C$, what was the initial temperature of the piece of copper?
	°c
Question 10 8 Points	Given the following thermodynamic data: $\Delta H^0_f M n O_2(s) = -504.0 \text{ kJ/mol} \qquad \Delta H^0_f A I_2 O_3(s) = -1675.7 \text{ kJ/mol}$ What quantity of heat is absorbed or evolved upon the production of 25.49g of AI₂O₃ : 4 AI(s) + 3 MnO₂(s) = 3 Mn(s) + 2 AI₂O₃(s)
	kJ (Released/Absprbed)
Question 11 4 Points	The Ideal Gas equation, PV = nRT, breaks down at high pressures and low temperatures. Why is this?
	Do Not Write Below This Line
	Exam III Score