Chem 111

Exam II

Whelan

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Average Single Bond Energies (kJ per mole)

	н	С	Ν	0	F	Si	Р	s	CI	Br	T
н	436	414	389	464	569	293	318	339	431	368	297
С		347	293	351	439	289	264	259	330	276	238
Ν			159	201	272		209		201	243	
0				138	184	368	351		205		201
F					159	540	490	285	255	197	
Si						176	213	226	360	289	
Ρ							213	230	331	272	213
s								213	251	213	
С									243	218	209
Br										192	180
Т											151

Average Multiple Bond Energies (kJ per mole)

N = N	418	C = C	611	
$N \equiv N$	946	$C \equiv C$	837	
N = 0	590	C = 0	803	In CO ₂
C = N	891	C = 0	745	
0 = 0	498	C ≡ O	1075	

Only

Average Single Bond Lengths (Picometers)

	н	С	Ν	0	F	Si	Р	s	CI	Br	1
н	74	110	98	94	92	145	138	132	127	142	161
С		154	147	143	141	194	187	181	176	191	210
Ν			140	136	134	187	180	174	169	184	203
0				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
Ρ	5.4 611						220	214	209	224	243
s								208	203	218	237
CI									200	213	232
Br										228	247
Т	52										266

Average Multiple Bond Lengths (Picometers)

C = C	134	$C \equiv C$	121
C = N	127	$C \equiv N$	115
C = 0	122	$C \equiv O$	113
N = 0	115	N≡0	108

 $1 \text{ pm} = 1 \times 10^{-12} \text{ m}$

SID	Last	First				
Question 1 4 Points	Give the complete electronic configuration fo	r the following:				
	a. Cl b.	Ga				
Question 2	Give the noble gas configuration for the follo	owing				
oromis	a. Br	c. Cu				
	b. Fe²⁺	d. F ⁻				
Question 3 6 Points	How many valence electrons do the following	atoms possess?				
	a. Al ³⁺ b. Ne	c. <i>C</i> u				
Question 4 4 Points	How many diamagnetic elements are there in	period 6 ?				
Question 5 5 Points	Arrange the following elements in order of increasing ionization energy, by ranking then from 1 (smallest) to 5CaGe(greatest)SrSr					
Question 6 5 Points	I belong to the 3rd period on the Periodic Tab electronegative than phosphorous , and I am s Who am I?	ble. I am less metallic than magnesium, less maller than silicon. (Symbol)				
Question 7	Draw the best Lewis Dot structure for the fo	ollowing				
10 FORMS	F ₂ CO	H₃O⁺				
	BCI ₃	XeF4				

Question 8 10 Points (6 Points)	Draw all <u>reasonable</u> resonance structure for Circle the correct answer:	FNO ₂ .	
(4 Points)	Average bond length table is on the front p The F to N bond length is expected to be:	<i>The N</i> to O bond length	h is expected to be:
		1 = 12/ mm	
	1. > 134 pm 2. < 134 pm	1. = 136 pm 2 > 136 pm	
	$3_{1} = 134 \text{ pm}$	3 . = 115 pm	
	••• ••• •••	4 . > 115 pm	
Question 9 6 Points	A Lewis structure for ozone, O_3 is depicted below:	01:	
	=0-0=0	02.	
	1 2 3	02.	
	Give the formal charge on each of the	03:	
	oxygen atoms.		
Question 10 5 Points	Phosgene, Cl ₂ CO is a highly toxic gas. Using t of this exam, estimate the enthalpy change for chlorine to produce phosgene. CO(g) + Cl ₂ (g	he <i>bond energies given</i> or the reaction of carbon 3) = Cl ₂ CO(g)	<i>on the front page</i> n monoxide and
Question 11 9 Points	$H = \begin{bmatrix} H & H & Z \\ I & I & I & H \\ H & -X & -X & -Y & -X & -Z & -H \\ I & I & I & 2 & Z & -H \\ H & H & H & H & pe \\ a. The bond angle around: 1:$	hypothetical organic mole e left. H is hydrogen and riod 2 elements. The fo rtain to this molecule 2 :	ecule is depicted on X, Y and Z are lowing questions 3:
	b. The symbol for: X:	y :	Z:
	c. The number of long naing in this malagula		
	c. The number of tone pairs in this molecule.	·	

Question 12

The following questions refer to the molecules depicted below.

	A	В	С	D			
	: <u>F</u> —Ci—F: ∣ :F:	ŧ≓−š ∣∕₽ ₽	ö=c=ö	<u> (1-1)</u>			
	E	F	G	н			
	ö=s=ö	:F: :F=в−F:	:ċi—Ň—ċi: :ċi:	ö=n=ö₁+			
1.	List the structure('s) whose only bond	angle is ~180°				
2	list the structures	(c) whose one is/an	lineen				
۷.	LIST THE STRUCTURES(S) Whose epg is/are linear:						
3.	Give the electron pair geometry (epg) for:						
	A:		E:				
	G:						
4.	Give the molecular	geometry for:					
	В:		F:				
	G:						
5.	Label the following	molecules as either	polar (P) or non po	lar (NP)			
	C: D:	H:					

Do Not Write Below This					
Exam II Score					