IA																	VIIIA
н			The Periodic Table								He						
1 1 01	114		20					• •	~~~			IIIA	074	1/4	1/(4	1/114	2
1.01	Ro	1 ⁰											C	N	0	E	No
2	De											2	6				10
6 94	9.01											10.81	12.01	14.01	16 00	19.00	20 18
Na	Ma	1										AI	C:	D	0.00	CI	Ar
Na	ivig											42	31	45	40	47	49
22,99	24.31	III B	/VB	1/B	1//B	VIIB	VIIIA	VIIIA	VIIIA	IB.	IIB.	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
				90	91	92	93	94	95	96	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Formula and Constants:

с	=	2.998×10 ⁸ m.s ⁻¹
h	=	6.626x10 ⁻³⁴ J.s
N	=	6.023×10 ²³ mol ⁻¹
1 nm	=	1×10 ⁻⁹ m

SID	Last First									
Question 1 4 Points	When the following calculation is carried out the answer should be reported to how many significant figures? $(168)\left[\frac{11.564 - 11.32}{1.248 \times 10^3}\right]$									
	Significant Figures									
Question 2 6 Points	A nucleus has 78 protons and 117 neutrons. Fill in the blanks to									
Question 3	Lithium has two naturally occurring isotopes:									
4 Points	Mass (amu) Abundance ⁶ ₃ Li 6.015 7.42% ⁷ ₃ Li 7.016 92.58%									
	What is the average atomic mass of Lithium? (Give your answer to 3 decimal places)									
Question 4	Use the Periodic Table accompanying this exam to answer the following questions:									
12 Points	1. Formula for the only diatomic in Period 5									
	2. Symbol for the heaviest Alkali Earth element.									
	3. Symbol for transition metal in Group VIB, Period 6.									
	4. Group IIIA Metals like to have this charge.									
	5. Uranium (U) is a: (metal, nonmetal, metalloid)									
	6. Group VIIA are collectively known as the:									
Question 5 5 Points	Assuming that the distance between the atoms are approximately the same which of the following ionic compounds would you expect to have the strongest force of attraction: (Circle your choice)									
	a) Sodium chloride b) Magnesium sulfide c) Aluminum phosphide									
	Briefly justify your choice:									

Question 6 8 Points	Give the correct name for each of the follow	wing ionic compounds.
	1. CuS	3. Na3P
	2. Ca(CO ₃) ₂	4. Fe3(PO4)2
Question 7	Give the correct formula for each of the fo	llowing ionic compounds.
	1. Ammonium hydroxide	3. Potassium chlorate
	2. Iron(II) sulfate	4. Aluminum chromate
Question 8 8 Points	Morphine, C17H19O3N A. 0.25 mol of Morphine weighs how	r many grams ?
	B. How many grams of Carbon is the	grams ere in 0.25 mol of Morphine?
Question 9 4 Points	What is the mass percent of N in N 2 O 5	grams
		%
Question 10 6 Points	Butyric acid is composed of carbon (54.52 % Its molar mass is 88.11 g/mol. Determine t	b), hydrogen (9.15 %) and oxygen (36.31 %). The molecular formula of the compound.

Question 11 9 Points	Balance the following chemical equations using the smallest whole number integers possible.
	1H_2(g) +Cl_2(g) =HCl(g)
	2. $C_2H_6(g) + O_2(g) = H_2O(I) + CO_2(g)$
	3KOH(aq) +H3PO4(aq) =K3PO4(aq) +H2O(I)
Question 12 6 Points	In the visible region of the electromagnetic spectrum, red and blue light lie at the extremes. Which of these has:
	1. The longest wavelength: 3. The smallest frequency:
	2. The least energy:
Question 13 4 Points	What is the frequency of ultraviolet light with a wavelength of 291 nm?
	Hz
Question 14	A chemical reaction can be initiated by light that carries energy of 2.44×10^5 J.mol ⁻¹ .
0101113	What is the longest wavelength , in meters , that can deliver the required energy?
	[Show All Work]
	m

Question 15 10 Points	1. How many orbitals are there with an n value equal to 3?							
	2. How many nodal surfaces are associated with a 3p orbital?							
	The orbital depicted on the left is:							
	4. What type of orbital?							
	5. Its n value is?							
	6. What is the smallest n value for this type of							
	orbital?							
	Do Not Write Below This							

Exam I Score