iA	$1 / 1 / A$																V/IIA
$\begin{aligned} & \mathrm{H} \\ & 1 \end{aligned}$		The Periodic Table															He 2
1.01												IIIA	IVA	VA	V/A	V/IA	4.00
$\underset{3}{\mathrm{Li}}$	Be 4											B	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{aligned} & \mathrm{Na} \\ & 11 \end{aligned}$	$\begin{gathered} \mathrm{Mg} \\ 12 \end{gathered}$											AI 13	Si	P	S	Cl_{17}	
22.99	24.31	\ldots	IVB	VB	V/B	V/IIS	V/igs	V/İB	V/IM	18	$1 / 8$	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	${ }^{85}$	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	$\mathbf{1 5 0 . 3 6}$	152.97	157.25	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	168.93	$\mathbf{1 7 3 . 0 4}$	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	$\mathbf{1 0 2}$	$\mathbf{1 0 3}$
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Formula and Constants:

$$
\begin{aligned}
& \mathrm{c}=2.998 \times 10^{8} \mathrm{~m} \cdot \mathrm{~s}^{-1} \\
& \mathrm{~h} \\
& \mathrm{~N} \\
& =6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s} \\
& 1 \mathrm{~nm}
\end{aligned}=6.023 \times 10^{23} \mathrm{~mol}^{-1}, 1 \times 10^{-9} \mathrm{~m} .
$$

SID \square

Question 1 4 Points

Question 2 6 Points

Question 3 4 Points

Lithium has two naturally occurring isotopes:

	Mass (amu)	Abundance
${ }^{6}{ }_{3} \mathrm{Li}$	6.015	7.42%
${ }^{7} \mathrm{Li}$	7.016	92.58%

What is the average atomic mass of Lithium? (Give your answer to 3 decimal places)
\square
amu
Question 4 12 Points

Question 5
5 Points
When the following calculation is carried out the answer should be reported to how many significant figures?

$$
\text { (168) }\left[\frac{11.564-11.32}{1.248 \times 10^{3}}\right]
$$

Significant Figures \square
A nucleus has 78 protons and 117 neutrons. Fill in the blanks to

Lithium has two naturally occurring isotopes:

Use the Periodic Table accompanying this exam to answer the following questions:

1. Formula for the only diatomic in Period 5
2. Symbol for the heaviest Alkali Earth element.
3. Symbol for transition metal in Group VIB, Period 6.
4. Group IIIA Metals like to have this charge.
\qquad
\qquad
\qquad
. Group IIIA Metals like to have this charge. \qquad
5. Uranium (U) is a: (metal, nonmetal, metalloid)
6. Group VIIA are collectively known as the:
\qquad
\qquad

Assuming that the distance between the atoms are approximately the same which of the following ionic compounds would you expect to have the strongest force of attraction: (Circle your choice)
a) Sodium chloride
b) Magnesium sulfide
c) Aluminum phosphide

Briefly justify your choice:

Question 6 Give the correct name for each of the following ionic compounds.

1. CuS
2. $\mathrm{Na}_{3} \mathrm{P}$
3. $\mathrm{Ca}\left(\mathrm{CO}_{3}\right)_{2}$ \qquad
4. $\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
\qquad

Question 7 8 Points

Give the correct formula for each of the following ionic compounds.

1. Ammonium hydroxide
2. Potassium chlorate
3. Iron(II) sulfate
4. Aluminum chromate
\qquad
\qquad

Morphine, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}$
A. 0.25 mol of Morphine weighs how many grams?
grams
B. How many grams of Carbon is there in 0.25 mol of Morphine?

What is the mass percent of N in $\mathrm{N}_{2} \mathrm{O}_{5}$

Butyric acid is composed of carbon (54.52\%), hydrogen (9.15\%) and oxygen (36.31%). Its molar mass is $88.11 \mathrm{~g} / \mathrm{mol}$. Determine the molecular formula of the compound.

Question 11 Balance the following chemical equations using the smallest whole number integers 9 Points possible.

1. \qquad $\mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{Cl}_{2}(\mathrm{~g})$
$=$ \qquad $\mathrm{HCl}(\mathrm{g})$
2. \qquad $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g})$ $=\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+$ \square $\mathrm{CO}_{2}(\mathrm{~g})$
3. \qquad $\mathrm{KOH}(\mathrm{aq})+$ \qquad $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})=$ \qquad $\mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{aq})+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Question 12

6 Points

In the visible region of the electromagnetic spectrum, red and blue light lie at the extremes. Which of these has:

1. The longest wavelength: \qquad 3. The smallest frequency:
2. The least energy:

What is the frequency of ultraviolet light with a wavelength of 291 nm ?

4 Points

Question 14 6 Points

A chemical reaction can be initiated by light that carries energy of $2.44 \times 10^{5}{\mathrm{~J} . \mathrm{mol}^{-1}}^{-1}$. Only light less than a certain wavelength will initiate the reaction.

What is the longest wavelength, in meters, that can deliver the required energy? [Show All Work]

