102

259.10 262.11

103

IA	_																VIIIA
H	The Periodic Table										He						
1	1753			110			Jui		ab			20202		1000	1000	1000	2
1.01	IIA	1										IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be	<u> </u>										в	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	3										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											A	Si	P	S	CI	Ar
11	12	MITTER										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB 🛛	IIB -	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	L.	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				ana an			~o	soan maa V	1996 - 1997 1	18.93		1991 S.C 199 290	2562C - 5262 				-
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Solubility Guidelines:

Np

 90
 91
 92
 93
 94
 95

 232.04
 231.04
 238.03
 237.05
 (240)
 243.06

96

(247)

97

(248)

98

99

(251) 252.08 257.10

100

101

(257)

Solu	Soluble Ionic Compounds						
1.	All sodium, potassium and ammonium salts are soluble.						
2.	All nitrate, acetate, chlorate and perchlorate salts are soluble						
3.	All chloride, bromide and iodide salts are soluble.						
	Except those that contain: lead, silver or mercury(I) (Hg2 ²⁺).						
4.	All fluoride salts are soluble.						
	Except those that contain: magnesium, calcium, strontium, barium or lead.						
5.	All sulfate salts are soluble.						
	Except those that contain: calcium, silver, mercury(I), strontium, barium or lead.						
Not	ot Soluble Ionic Compounds						
1.	All hydroxide and oxide salts are not soluble.						
	Except those that contain: sodium, potassium or barium.						
2.	All sulfide salts are not soluble.						
	Except those that contain: sodium, potassium ammonium or barium.						
3.	All carbonate and phosphate salts are not soluble.						
	Except those that contain: sodium, potassium or ammonium.						

Question 5 6 Points	Write the net ionic equation for the reaction that takes places when aqueous solutions of ammonium sulfide and chromium(III) iodide are combined.
Question 6 6 Points	Write the net ionic equation for the reaction that takes places when aqueous solutions of hydrocyanic acid (HCN) and lithium hydroxide are combined.
Question 7 6 Points	Write the net ionic equation for the reaction that takes places when solid calcium carbonate is added to hydroiodic acid .

Question 11 4 Points	Using standard heats of formation given, calculate the standard enthalpy change for the following reaction: $4 \text{ NH}_3(g) + 5 O_2(g) = 4 \text{ NO}(g) + 6 \text{ H}_2O(g)$										
	[∆H ⁰ _f :	NH₃(g), -46 k.	J/mol N	NO(g), 90 kJ/mol	H2O(g), -242 kJ/mol]						
					kJ/mol						
Question 12 8 Points	a) A 1.13 mol sample of He gas is confined in a 27.3 liter container at 21.5 °C.										
	If 1.13 mol of O_2 is substituted for the 1.13 mol of He, holding the volume and										
	T C	Decrease	rant, the ave O	not enough in	formation given						
	C	O Increase	0	remain the sa	me						
	b) A	A 1.36 mol sample	e of O 2 gas is	confined in a 32.9 liter container at 21.5 °C.							
	I	If the amount of gas is decreased to 0.680 mol, holding the volume and tempera constant the pressure will									
	(D Decrease	0	not enough in	formation given						
	() Increase	0	remain the sa	me						
	c) A	A 0.708 mol sample of CO_2 gas is confined in a 17.4 liter container at 26.8°C.									
	I	If the volume of the gas sample is decreased to 8.71 L holding the temperature									
	(Decrease	Der of moled O	not enough in	formation given						
	C	O Increase	0	remain the sa	me						
	d) A 0.708 mol sample of CO_2 gas is confined in a 17.4 liter container at 26.8 If the temperature of the gas sample is decreased to 8.00°C, holding the v										
	C	constant, the pressure will decrease because :									
		D The gas mo	lecules are 1 a kinatic an	moving slower.	las has despessed						
	(D The number	r of collisior	n per unit time decr	reases						
	C	D All of the o	ibove.								

Question 13 ^{5 Points} In the laboratory you dilute **4.91** mL of a concentrated **6.02** M **nitric acid** solution to a total volume of **155** mL. What is the concentration of the dilute solution?

M

Question 14
7 PointsFor the following reaction, 4.89 grams of sodium are mixed with 0.308 moles of water.
sodium (s) + water (l) = sodium hydroxide (aq) + hydrogen (g)
What is the maximum amount (in grams) of hydrogen gas that can be produced?

For full credit you must show work and include a balanced chemical equation.

grams of hydrogen gas

Question 15 ^{7 Points} How many grams of solid barium hydroxide are needed to exactly neutralize 25.8 mL of a 0.701 M perchloric acid solution? Assume that the volume remains constant.

For full credit you must show work and include a balanced chemical equation.

grams

Do Not Write Below This							
Exam III Score							