

Ce 58 140.12	Pr 59 140.91	$\begin{array}{\|c\|} \hline \mathrm{Nd} \\ 60 \\ 144.24 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Pm } \\ 61 \\ (145) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Sm } \\ 62 \\ 150.36 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Eu } \\ 63 \\ 152.97 \end{array}$	64 157.25	$\begin{array}{\|c\|} \hline \text { Tb } \\ 65 \\ 158.93 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Dy } \\ 66 \\ 162.50 \\ \hline \end{array}$	$\begin{gathered} \hline \mathrm{Ho} \\ 67 \\ 164.93 \\ \hline \end{gathered}$	Er 68 167.26	$\begin{array}{\|c\|} \hline \text { Tm } \\ 69 \\ 168.93 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{Yb} \\ 70 \\ 173.04 \\ \hline \end{array}$	$\begin{array}{\|c\|c\|} \hline \text { Lu } \\ 71 \\ 174.97 \\ \hline \end{array}$
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Solubility Guidelines:

Soluble Ionic Compounds

1. All sodium, potassium and ammonium salts are soluble.
2. All nitrate, acetate, chlorate and perchlorate salts are soluble
3. All chloride, bromide and iodide salts are soluble.

Except those that contain: lead, silver or mercury(I$)\left(\mathrm{Hg}_{2}{ }^{2+}\right)$.
4. All fluoride salts are soluble.

Except those that contain: magnesium, calcium, strontium, barium or lead.
5. All sulfate salts are soluble.

Except those that contain: calcium, silver, mercury(I), strontium, barium or lead.

Not Soluble Ionic Compounds

1. All hydroxide and oxide salts are not soluble.

Except those that contain: sodium, potassium or barium.
2. All sulfide salts are not soluble.

Except those that contain: sodium, potassium ammonium or barium.
3. All carbonate and phosphate salts are not soluble.

Except those that contain: sodium, potassium or ammonium.
\square
\qquad Firs \dagger

Question 1 8 Points

Classify the above molecules as either polar or nonpolar.
A. \qquad C. \qquad
B. \qquad D. \qquad

Question 2
12 Points

Question 3 6 Points

For each hybridization type, choose a picture that corresponds to the correct orbital picture and specify the electron pair geometry. If no picture matches, enter N.

A

Hybridization

sp
 $s p^{3} d$
 $s p^{2}$

A molecule has $\mathbf{s p}^{3}$ hybridization with 2 lone pairs:
a) The electron pair geometry of this molecule is
b) The geometry of this molecule is
c) The approximate bond angle in the molecule

Give the formula for the precipitate that is formed when each of the following aqueous solutions are mixed. (If no precipitate is expected then write no precipitate)

1. Iron(III) bromide and sodium hydroxide
2. Calcium chloride and ammonium sulfide
3. Calcium hydroxide and hydrochloric acid

B
Picture
\qquad
\qquad
\qquad
\qquad

Electron Pair Geometry
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question 4 9 Points

Question 5 6 Points

Write the net ionic equation for the reaction that takes places when aqueous solutions of ammonium sulfide and chromium(III) iodide are combined.

Question 6 6 Points

Write the net ionic equation for the reaction that takes places when aqueous solutions of hydrocyanic acid (HCN) and lithium hydroxide are combined.

Question 7 6 Points

Write the net ionic equation for the reaction that takes places when solid calcium carbonate is added to hydroiodic acid.

Question 8
5 Points
After absorbing 1.81 kJ of heat the temperature of a 0.723 kg block of copper is $40.6^{\circ} \mathrm{C}$. The specific heat of copper is $0.385 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$. What was the initial temperature of the copper block?
0.301 g of C (graphite) is burned in excess oxygen to give $\mathrm{CO}_{2}(\mathrm{~g})$ C (graphite) $+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g})$
The temperature of the calorimeter, which contained 775 g of water, increases from $25.1^{\circ} \mathrm{C}$ to $27.48^{\circ} \mathrm{C}$. What quantity of heat is evolved per mole of carbon?
[Heat capacity water $=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad$ Heat capacity calorimeter $=893 \mathrm{~J} /{ }^{\circ} \mathrm{C}$]

Question 10 4 Points

Given the standard enthalpy changes for the following two reactions:
1.
$=2 \mathrm{HgO}(\mathrm{s})$
$\Delta H^{\circ}=-181.6 \mathrm{~kJ}$
2.
$=\mathrm{HgCl}_{2}(\mathrm{~s})$
$\Delta H^{\circ}=-224.3 \mathrm{~kJ}$
what is the standard enthalpy change for the reaction:

$$
2 \mathrm{HgCl}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{HgO}(\mathrm{~s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\circ}=?
$$

Question 11 4 Points

Using standard heats of formation given, calculate the standard enthalpy change for the following reaction:

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(\mathrm{~g})=4 \mathrm{NO}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$\left[\Delta H^{0}\right.$:
$\mathrm{NH}_{3}(\mathrm{~g}),-46 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{NO}(\mathrm{g}), 90 \mathrm{~kJ} / \mathrm{mol}$
$\left.\mathrm{H}_{2} \mathrm{O}(\mathrm{g}),-242 \mathrm{~kJ} / \mathrm{mol}\right]$

Question 12 8 Points

 (g)
\square $\mathrm{kJ} / \mathrm{mol}$
a) A 1.13 mol sample of He gas is confined in a $\mathbf{2 7} .3$ liter container at $21.5^{\circ} \mathrm{C}$.

If 1.13 mol of O_{2} is substituted for the 1.13 mol of He , holding the volume and temperature constant, the average kinetic energy will
O Decrease
O not enough information given
O Increase
O remain the same
b) A 1.36 mol sample of O_{2} gas is confined in a 32.9 liter container at $21.5^{\circ} \mathrm{C}$.

If the amount of gas is decreased to 0.680 mol , holding the volume and temperature constant, the pressure will
O Decrease O not enough information given
O Increase O remain the same
c) A 0.708 mol sample of CO_{2} gas is confined in a $\mathbf{1 7 . 4}$ liter container at $26.8^{\circ} \mathrm{C}$.

If the volume of the gas sample is decreased to 8.71 L holding the temperature constant, the number of molecule-wall collisions per unit area per unit time will
O Decrease O not enough information given
O Increase O remain the same
d) A 0.708 mol sample of CO_{2} gas is confined in a $\mathbf{1 7 . 4}$ liter container at $26.8^{\circ} \mathrm{C}$.

If the temperature of the gas sample is decreased to $8.00^{\circ} \mathrm{C}$, holding the volume constant, the pressure will decrease because:
O The gas molecules are moving slower.
O The average kinetic energy of the molecules has decreased.
O The number of collision per unit time decreases
O All of the above.

Question 13 In the laboratory you dilute 4.91 mL of a concentrated 6.02 M nitric acid solution to a

Question 14 7 Points

For the following reaction, 4.89 grams of sodium are mixed with 0.308 moles of water.
sodium (s) + water (I) = sodium hydroxide (aq) + hydrogen (g)
What is the maximum amount (in grams) of hydrogen gas that can be produced?
For full credit you must show work and include a balanced chemical equation.

Question 15 How many grams of solid barium hydroxide are needed to exactly neutralize 25.8 mL of 7 Points a 0.701 M perchloric acid solution? Assume that the volume remains constant.

For full credit you must show work and include a balanced chemical equation.
grams

Do Not Write Below This
Exam III Score

