H											VIIIA He 2						
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be	~										В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	,										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12											13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB.	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr.	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	200	(A)	
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Average Single Bond Lengths (Picometers)

	Н	С	N	0	F	Si	Ρ	S	CI	Br	1
Н	74	110	98	94	92	145	138	132	127	142	161
С		154	147	143	141	194	187	181	176	191	210
Ν			140	136	134	187	180	174	169	184	203
0				132	130	183	176	170	165	180	199
F	59 (2)				128	181	174	168	163	178	197
Si						234	227	221	216	231	250
Р							220	214	209	224	243
S								208	203	218	237
CI									200	213	232
Br										228	247
1											266

Average Multiple Bond Lengths (Picometers)

C = C	134	$C \equiv C$	121
C = N	127	$C \equiv N$	115
C = 0	122	$C \equiv O$	113
N = 0	115	$N \equiv O$	108

1s					
25	2p				
35	3р	3d			
4s	4p	4d	4f		
5s	5p	5d	5f		
65	6р	6d			
7s	7p				

SID	Last	First	
Question 1 4 Points	Each of the orbitals depicted has the has the highest n value?	lowest value of n possible for its t	ype . Which one
		00 8	
	α	b c	
Question 2 6 Points	The orbital depicted on the left is: a. What type of orbital? b. Its n value is? c. Its specific designation is? (xy, xz, yz, x²-y², z²)	× ×	r ² Ψ ²
		Boundary Surface	y Dot Picture
Question 3 4 Points	Circle those of the following orbital de 2s 1d 4p 9d 1p	esignations are true designations? 3f 4g	
Question 4	Give the complete electronic configure	ation for the following:	
11011113	a. P	b. Al ³⁺	
Question 5 6 Points	Give the noble gas configuration for to a. Kr b. Ni ²⁺	_	
Question 6 6 Points	Give the <u>symbol</u> of the expected diam	agnetic elements in period 5?	
Question 7 6 Points	Using only the periodic table arrange tradius: sodium, cesium, potassi		ncreasing atomic
	Smallest	Largest	

Question 8 6 Points	Using only the periodic table arrange the ionization energy: bromine, poto	_	•
	Largest		Smallest
Question 9 4 Points	Using only the periodic table arrange the electron affinity: magnesium, s	_	g elements in order of decreasing itrogen, calcium
	 Largest	. <u>–</u>	Smallest
Question 10 8 Points	Draw the <u>best</u> Lewis Dot structure for th	e followi	ing
	N₂	HFC	co
	BF ₃	XeF	2
Question 11 4 Points	Draw the <u>best</u> Lewis Dot structure for CS the following questions based on your draw		rough work paper provided and answer
	With regards to the central atom: a. The number of lone pairs		The central atom: 1) Obeys the Octet Rule
	b. The number of single bonds		2) Has an incomplete Octet
	c. The number of double bo nds		3) Has an expanded Octet
Question 12	Draw the <u>best</u> Lewis Dot structure for th	e followi	ng organic molecules
4 Points	CH₃COCH₃	CH₃	CH₂COOH

Question 13 6 Points (4 Points)

Draw all <u>reasonable</u> resonance structure for NO₂-.

Circle the best answer:

Average bond length table is on the front page of this exam.

(2 Points)

The N to O bond length in pm is expected to be:

- **1**. = 136

- **2.** > 115 **3.** = 115 **4.** > 136

Question 14 20 Points

A	В	С	D
<u>ö</u> =и=ö ¬⁺	:Br→J.→Br:	:F: :E /E: :E F:	:d: :d: -
Ε	F	G	Н
:Ö—N=Ö	н—ё—н	:Ö—Xe—Ö: :O:	н—й—н Н □+

- 1. List the structure(s) whose only bond angle is 180°
- 2. Give the electron pair geometry (epg) for:

<u>A</u>:_____

<u>C</u>: _____

3. Give the molecular geometry for:

4. E, F, G, and H. The molecule with the smallest bond angle?

Question 15 6 Points

A resonance structure of **CNO** is given below:

Give the formal charge on:

Question	16
6 Painta	

Another resonance structure of the same molecule is given below $% \left\{ 1,2,\ldots ,n\right\} =0$

Do you 1 5 ?	consider this a better structure than that in Question
Why?	

*C=	N	_	o:	
_	(b			

Do Not Write Below This