

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	150.36	152.97	157.25	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Br	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Average Single Bond Lengths (Picometers)

	H	C	N	0	F	Si	P	S	Cl	Br	1
H	74	110	98	94	92	145	138	132	127	142	161
C		154	147	143	141	194	187	181	176	191	210
N			140	136	134	187	180	174	169	184	203
0				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
P							220	214	209	224	243
S								208	203	218	237
Cl									200	213	232
Br										228	247
1											266

Average Multiple Bond Lengths (Picometers)

$\mathrm{C}=\mathrm{C}$	134			
$\mathrm{C}=\mathrm{N}$	127			
$\mathrm{C}=\mathrm{O}$	122			
$\mathrm{~N}=\mathrm{O}$	115	\quad	$\mathrm{C} \equiv \mathrm{C}$	121
:---	:---	:---		
$\mathrm{C} \equiv \mathrm{N}$	115			
$\mathrm{C} \equiv \mathrm{O}$	113			
$\mathrm{~N} \equiv \mathrm{O}$	108			

$$
1 \mathrm{pm}=1 \times 10^{-12} \mathrm{~m}
$$

SID \square
\qquad
\qquad

Question 1 4 Points

Question 2 6 Points

Each of the orbitals depicted has the lowest value of n possible for its type. Which one has the highest n value?

a

b

C

The orbital depicted on the left is:
a. What type of orbital? \qquad
b. Its n value is?
c. Its specific designation is?
($x y, x z, y z, x^{2}-y^{2}, z^{2}$)

Boundary
Surface

Dot Picture

Question 3 4 Points

Question 4 4 Points

Question 5 6 Points

Question 6 6 Points

Question 7 6 Points

Circle those of the following orbital designations are true designations?

$$
2 s \quad 1 d \quad 4 p \quad 9 d \quad 1 p \quad 3 f \quad 4 g
$$

Give the complete electronic configuration for the following:
a. \mathbf{P}
b. Al^{3+}

Give the noble gas configuration for the following
a. Kr
b. Ni^{2+}
c. Cu

Give the symbol of the expected diamagnetic elements in period 5 ? \qquad

Using only the periodic table arrange the following elements in order of increasing atomic radius: sodium, cesium, potassium

Question 8 6 Points

Using only the periodic table arrange the following elements in order of decreasing ionization energy: bromine, potassium, gallium

Largest
Smallest
Question 9
4 Points

Question 10 8 Points

Question 11 4 Points

Using only the periodic table arrange the following elements in order of decreasing electron affinity: magnesium, silicon, nitrogen, calcium

Largest

Draw the best Lewis Dot structure for the following

N_{2}	HFCO
BF_{3}	XeF_{2}

Draw the best Lewis Dot structure for CS_{2} on the rough work paper provided and answer the following questions based on your drawing.

With regards to the central atom:
a. The number of lone pairs
b. The number of single bonds
c. The number of double bonds

The central atom:

1) Obeys the Octet Rule
2) Has an incomplete Octet
3) Has an expanded Octet

Question 12 4 Points

Draw the best Lewis Dot structure for the following organic molecules
$\mathrm{CH}_{3} \mathrm{COCH}_{3}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$

Question 13 Draw all reasonable resonance structure for $\mathrm{NO}_{2}{ }^{-}$.
(2 Points)

Question 14 20 Points

Circle the best answer:
Average bond length table is on the front page of this exam.
The \mathbf{N} to \mathbf{O} bond length in pm is expected to be:

1. $=136$
2. >115
3. $=115$
4. >136

5. List the structure(s) whose only bond angle is 180°
6. Give the electron pair geometry (epg) for:

A: \qquad C: \qquad
B: \qquad E: \qquad
3. Give the molecular geometry for:

D: \qquad E: \qquad
G: \qquad H: \qquad
4. E, F, G, and H. The molecule with the smallest bond angle? \qquad

Question 15 6 Points

A resonance structure of CNO^{-}is given below:
Give the formal charge on:
$[\%-\mathrm{N}=\mathrm{O}]^{-}$
C \qquad N
0
(a)

Question 16 6 Points

Another resonance structure of the same molecule is given below
Do you consider this a better structure than that in Question 15?

$$
\left[E C=\mathrm{N}-\stackrel{\leftrightarrow}{*}_{*}^{*}\right]^{-} \quad \text { Why? }
$$

(b)

