iA	$1 / \mathrm{A}$	The Periodic Table															V/IIA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$																	He 2
1.01												IIIA	IVA	VA	V/A	V/IA	4.00
$\begin{gathered} \hline \mathrm{Li} \\ 3 \end{gathered}$	Be 4											B	C	N 7	0 8	F	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
$\begin{gathered} \mathrm{Na} \\ 11 \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{Mg} \\ 12 \end{array}$											AI 13	Si	P 15		Cl 17	
22.99	24.31	\ldots	IVB	V/B	V/B	V/IB	V/IM	V / mb	V/IM	18	/18	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
37	38	39	40	41	42	43	4	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	$\mathbf{1 5 0 . 3 6}$	152.97	157.25	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	168.93	$\mathbf{1 7 3 . 0 4}$	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	$\mathbf{1 0 2}$	$\mathbf{1 0 3}$
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Some Formula and Constants:

$$
\begin{aligned}
& \text { c } \quad=\quad 2.998 \times 10^{8} \mathrm{~m} . \mathrm{s}^{-1} \\
& h=6.626 \times 10^{-34} \mathrm{~J} . \mathrm{s} \\
& \mathrm{~N}=6.023 \times 10^{23} \mathrm{~mol}^{-1} \\
& 1 \mathrm{~nm}=1 \times 10^{-9} \mathrm{~m}
\end{aligned}
$$

\square
\qquad Firs \dagger \qquad

Question 1 10 Points

Question 2 6 Points

Question 3 6 Points
a. Give the correct number of significant figures for each of the following: 180: 2.30×10^{-3} :
b. Report the answer for the following operation to the correct number of significant figures: 23.46-1.1 = \qquad
c. When 58.6 is divided by 77.31 , the answer should be reported to \qquad significant digit(s).
d. How many hours are there in exactly 26 days? \qquad

Circle those of the following (if any) that have the same number of protons, neutrons and electrons.
${ }^{13} \mathrm{C}$
${ }^{1} \mathrm{H}$
${ }^{24} \mathrm{Mg}$
${ }^{9} \mathrm{Be}$
${ }^{40} \mathrm{Ca}^{2+}$
${ }^{4} \mathrm{He}$

A piece of copper contains 5.4×10^{8} atoms. What is the mass of the sample in kilograms?
No need to do the calculation - just set up the correct dimensional analysis conversions you may not need to fill in all the boxes.

$1 \mathrm{~cm}^{3} \mathrm{Cu}=8.8 \mathrm{~g} \mathrm{Cu}$	$1 \mathrm{~kg}=1000 \mathrm{~g}$	$1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
9.5×10^{21} atoms $\mathrm{Cu}=1 \mathrm{~g} \mathrm{Cu}$	$1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$	

Protons: \qquad Neutrons: \qquad Electrons: \qquad

Question 5 4 Points

A certain element consists of two stable isotopes.
The first has an atomic mass of 107 amu and a percent natural abundance of 51.8%.
The second has an atomic mass of 109 amu and a percent natural abundance of 48.2\% Show Work

Question 6 10 Points

Question 7 2 Points

3 Points

Question 8 8 Points

Use the Periodic Table accompanying this exam to answer the following questions:

1. Formula for the only diatomic in Period 3
2. Symbol for the heaviest Alkali Earth element.
3. Symbol for transition metal in Group IB, Period 4.
4. Plutonium (Pu) is $\mathrm{a}:$ (metal, nonmetal, metalloid)
5. Group IA are collectively known as the:

Circle the salt that has the greatest Coulombic force of attraction?
NaCl
CsCl
KCl
LiCl

Briefly justify your choice.

Give the correct name for each of the following ionic compounds.
a. $\mathrm{NH}_{4} \mathrm{OH}$ \qquad c. $\mathrm{Cu}\left(\mathrm{ClO}_{2}\right)_{2}$ \qquad
b. FeS
d. CaSO_{3}

Give the correct formula for each of the following ionic compounds.
a. Copper(II) nitrite \qquad
b. Sodium nitride \qquad
c. Calcium hydrogen carbonate

Calculate the mass percent of oxygen in dinitrogen tetraoxide.
Show Work

Question 11
6 Points

How many ATOMS of nitrogen are present in 2.56 moles of dinitrogen oxide? Show Work

Question 12
6 Points

A hydrocarbon is a compound composed purely of hydrogen and carbon. If a particular hydrocarbon is found to be composed of $89.93 \% C$ and has a molar mass of $120.21 \mathrm{~g} / \mathrm{mol}$. What is the formula of this hydrocarbon?

Question 13 Balance the following chemical equations using the smallest whole number integers possible.

1. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+$ $\mathrm{O}_{2}(\mathrm{~g})=$ \qquad $\mathrm{CO}_{2}(\mathrm{~g})$
$+$ \qquad $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
2. Sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)+$ Potassium hydroxide $=$ Potassium sulfate + water

Question 13
6 Points
X rays

Circle the correct answer to each of the following:
a. The one with the shortest wavelength:
b. The one with the highest frequency:
c. The one with the smallest energy:

Xrays IR
Visible UV
IR

AM

AM
γ Rays
FM

Question 14 If your eyes receive a signal consisting of blue light, $\lambda=4.66 \times 10^{-7} \mathrm{~m}$. Determine the 6 Points energy in $\mathrm{J}^{\mathrm{mol}}{ }^{-1}$ of this light?
$\square \mathrm{J} . \mathrm{mol}^{-1}$

Do Not Write Below This

Exam I Score

