

| Ce <br> 58 <br> 140.12 | Pr <br> 59 <br> 140.91 | $\begin{array}{\|c\|} \hline \mathrm{Nd} \\ 60 \\ 144.24 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Pm } \\ 61 \\ (145) \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Sm } \\ 62 \\ 150.36 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Eu } \\ 63 \\ 152.97 \end{array}$ | 64 <br> 157.25 | $\begin{array}{\|c\|} \hline \text { Tb } \\ 65 \\ 158.93 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \text { Dy } \\ 66 \\ 162.50 \\ \hline \end{array}$ | $\begin{gathered} \hline \mathrm{Ho} \\ 67 \\ 164.93 \\ \hline \end{gathered}$ | Er <br> 68 <br> 167.26 | $\begin{array}{\|c\|} \hline \text { Tm } \\ 69 \\ 168.93 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline \mathrm{Yb} \\ 70 \\ 173.04 \\ \hline \end{array}$ | $\begin{array}{\|c\|c\|} \hline \text { Lu } \\ 71 \\ 174.97 \\ \hline \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr |
| 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 |
| 232.04 | 231.04 | 238.03 | 237.05 | (240) | 243.06 | (247) | (248) | (251) | 252.08 | 257.10 | (257) | 259.10 | 262.11 |

Solubility Guidelines:

## Soluble Ionic Compounds

1. All sodium, potassium and ammonium salts are soluble.
2. All nitrate, acetate, chlorate and perchlorate salts are soluble
3. All chloride, bromide and iodide salts are soluble.

Except those that contain: lead, silver or mercury( I$)\left(\mathrm{Hg}_{2}{ }^{2+}\right)$.
4. All fluoride salts are soluble.

Except those that contain: magnesium, calcium, strontium, barium or lead.
5. All sulfate salts are soluble.

Except those that contain: calcium, silver, mercury(I), strontium, barium or lead.

## Not Soluble Ionic Compounds

1. All hydroxide and oxide salts are not soluble.

Except those that contain: sodium, potassium or barium.
2. All sulfide salts are not soluble.

Except those that contain: sodium, potassium ammonium or barium.
3. All carbonate and phosphate salts are not soluble.

Except those that contain: sodium, potassium or ammonium.
$\square$
$\qquad$ Firs $\dagger$ $\qquad$

Question 1 9 Points

Question 2 10 Points

Question 3 6 Points

Question 4 4 Points

Question 5 9 Points

Question 6 5 Points

Classify each of the following molecules as polar or nonpolar?

1. $\mathrm{SO}_{3}$ $\qquad$ 3. $I_{3}{ }^{-}$
2. $\mathrm{NCl}_{3}$ $\qquad$
There are $\qquad$ hybrid orbitals represented by the picture on the left. They are composed of* atomic orbitals, corresponding to $\qquad$ hybridization. They have the electron pair geometry $\qquad$ with bond angles of $\qquad$ .

*     - Give the number of each of these orbitals that make the hybrid orbital depicted.

A molecule has $s^{2}$ hybridization with 1 lone pair:
a) The electron pair geometry of this molecule is $\qquad$
b) The geometry of this molecule is
c) The approximate bond angle in the molecule $\qquad$

The compound chromium(III) nitrate is a strong electrolyte. Write the reaction when chromium(III) nitrate is put into water:
$\qquad$ $=$ $\qquad$
Give the formula for the precipitate that is formed when each of the following aqueous solutions are mixed. (If no precipitate is expected then write no precipitate)

1. Iron(III) bromide and sodium sulfide
2. Calcium chloride and ammonium iodide $\qquad$
3. Lead (II) nitrate and potassium chloride

Write the net ionic equation for the reaction that takes places when aqueous solutions of silver(I) nitrate and nickel(II) chloride are combined.

Question 7 5 Points

Write the net ionic equation for the reaction that takes places when aqueous solutions of hydrofluoric acid (HF) and ammonia $\left(\mathrm{NH}_{3}\right)$ are combined.

Question 8 5 Points

Question 9 5 Points

Write the net ionic equation for the reaction that takes places when solid calcium carbonate is added to perchloric acid.
$=$ $\qquad$
In the laboratory a student finds that it takes 21.7 Joules to increase the temperature of 11.7 grams of liquid mercury from 22.3 to 36.8 degrees Celsius.
Determine the specific heat of mercury.
For full credit you must show work.

Question 10
5 Points

A sample of solid gold is heated with an electrical coil. If 29.4 Joules of energy are added to a 15.0 gram sample and the final temperature is $38.7^{\circ} \mathrm{C}$, what is the initial temperature of the gold? Heat capacity of gold, $0.129 \mathrm{~J} / \mathrm{g} .{ }^{\circ} \mathrm{C}$
For full credit you must show work.

Question 11 5 Points

The following thermochemical equation is for the reaction of hydrogen peroxide $(I)$ to form water(l) and oxygen(g).

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})=2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-196 \mathrm{~kJ}
$$

How many grams of $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})$ would have to react to produce 30.4 kJ of energy? For full credit you must show work.

$$
\mathrm{g} \mathrm{H}_{2} \mathrm{O}_{2}
$$

Question 12 5 Points
0.927 grams of benzoic acid is burned completely in a bomb calorimeter. The bomb is surrounded by 1.000 kg of water. The temperature increases from 25.12 to 29.36 degrees Celsius. If the heat capacity of the bomb is $1.60 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$, calculate the heat of combustion of the benzoic acid in $\mathrm{kJ} / \mathrm{gram}$. The specific heat of water is $4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. Circle the best answer!
o $21.4 \mathrm{~kJ} / \mathrm{gram}$
o $-26.5 \mathrm{~kJ} / \mathrm{gram}$
o $-32.7 \mathrm{~kJ} / \mathrm{gram}$

Question 13 Given the standard enthalpy changes for the following two reactions:
(1) $2 \mathrm{Ni}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NiO}(\mathrm{s}) \ldots . . . \Delta \mathrm{H}^{\circ}=-479.4 \mathrm{~kJ}$
(2) $\mathrm{Ni}(\mathrm{s})+\mathrm{Cl}_{2}(\mathrm{~g})=\mathrm{NiCl}_{2}(\mathrm{~s}) \ldots . . . \Delta \mathrm{H}^{\circ}=-305.3 \mathrm{~kJ}$
what is the standard enthalpy change for the reaction:
(3) $2 \mathrm{NiCl}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{NiO}(\mathrm{s})+2 \mathrm{Cl}_{2}(\mathrm{~g}) . . . . . \Delta \mathrm{H}^{\circ}=$ ?

For full credit you must show work.

Question 14
5 Points

Using standard heats of formation given, calculate the standard enthalpy change for the following reaction:

$$
4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g)=4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g)
$$

$\left[\Delta H_{f}^{0}\right.$ :
$\mathrm{NH}_{3}(\mathrm{~g}),-46 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{NO}(\mathrm{g}), 90 \mathrm{~kJ} / \mathrm{mol}$
$\left.\mathrm{H}_{2} \mathrm{O}(\mathrm{g}),-242 \mathrm{~kJ} / \mathrm{mol}\right]$
For full credit you must show work.

Question 15 In the laboratory you dilute 4.83 mL of a concentrated 6.00 M hydriodic acid solution to a 5 Points total volume of 50.0 mL . What is the concentration of the dilute solution? For full credit you must show work.

Question 16 6 Points

For the following reaction, 6.64 grams of nitrogen gas are mixed with excess oxygen gas. The reaction yields 12.5 grams of nitrogen monoxide.
nitrogen ( g ) + oxygen ( g ) = nitrogen monoxide ( g )
What is the percent yield for this reaction ?
For full credit you must show work and include a balanced chemical equation.

Question 17 For the following reaction, 3.69 grams of chlorine gas are mixed with $6.56 \times 10^{-2}$ moles of 6 Points sodium iodide.
chlorine + sodium iodide = sodium chloride + iodine
What is the maximum amount of iodine that can be formed?
For full credit you must show work and include a balanced chemical equation.


