Chem 111

Exam II

Whelan

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Average Single Bond Lengths (Picometers)

	н	С	Ν	0	F	Si	Р	S	CI	Br	1
н	74	110	98	94	92	145	138	132	127	142	161
С		154	147	143	141	194	187	181	176	191	210
Ν			140	136	134	187	180	174	169	184	203
0				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
Р							220	214	209	224	243
s								208	203	218	237
СІ									200	213	232
Br										228	247
L							1				266

Average Multiple Bond Lengths (Picometers)

C = C	134	$C \equiv C$	121
C = N	127	C ≡ N	115
C = 0	122	C ≡ O	113
N = 0	115	N≡0	108

 $1 \text{ pm} = 1 \times 10^{-12} \text{ m}$

	н	С	Ν	0	F	Si	Р	s	CI	Br	1
н	436	414	389	464	569	293	318	339	431	368	297
С		347	293	351	439	289	264	259	330	276	238
Ν			159	201	272		209		201	243	
0				138	184	368	351		205		201
F					159	540	490	285	255	197	
Si						176	213	226	360	289	
Ρ							213	230	331	272	213
s								213	251	213	
CI								1	243	218	209
Br										192	180
Т								1			151

Average Single Bond Energies (kJ per mole)

Average Multiple Bond Energies (kJ per mole)

N = N	418	C = C	611	
$N \equiv N$	946	$C \equiv C$	837	
N = 0	590	C = 0	803	In CO ₂ Only
C ≡ N	891	C = 0	745	
0 = 0	498	C ≡ O	1075	

SID	Last		First	
Question 1 6 Points	Label the following orbital's	as either: s, p, d, f	, g?	}
Question 2 6 Points	The orbital depicted on the a. What type of orbital? b. Its n value is? c. Its specific designation	left is: on is?		r ² Ψ ² r(a ₀)
Question 3 4 Points	Give the complete electroni a. Cl	(x, y, z, xy, xz, yz, x²- c configuration for	y², z²) the following: b. Ga ³⁺	Y
Question 4 8 Points	Give the noble gas configur a. Ar b. Ni ²⁺	ation for the follow	ing c. Cr d. Br	
Question 5 4 Points	How many Valence electron	s are associated wi [.]	th the Noble Gases ?	
Question 6 3 Points	How many paramagnetic ele	ments are there in	period 4?	
Question 7 4 Points	Using only the periodic table 4 in order of increasing ele the largest electron affinit	e given with this ex ctron affinity (1 b y:	am rank the following eing the smallest elec	elements from 1 to tron affinity and 4
	Na	N	P	K
Question 8 6 Points	Using only the periodic table of increasing size :	e given with this ex chlorine, aluminum	am arrange the follow , gallium (Ga)	ring elements in order
	Smallest		Lar	gest

Question 9	Draw the <u>best</u> Lewis Dot structure for the following molecules						
	со		HCN	1			
	XeF4		CIO	2			
Question 10 4 Points	Draw the <u>best</u> Lewi the following questi	s Dot structure for F ; ons based on your dra	₂ CO on the wing.	e rough work paper provided and answer			
	With regards to the a. The number	e central atom : of lone pairs		The central atom: 1) Obeys the Octet Rule			
	b. The number	of single bonds		2) Has an incomplete Octet			
	c. The number	of double bo nds		3) Has an expanded Octet			
Question 11	Draw the <u>best</u> Lewi	s Dot structure for th	ne followin	g organic molecules			
o Points	CH₃CH₂OCH₃		СH₃	COOCH₃			
Question 12 9 Points (6 Points)	Draw all <u>reasonable</u> Circle the best answ	resonance structure ver:	for NO₂F.				
(3 Points)	Average bond leng The N to O bond len	th table is on the fro ngth in pm is expected	o nt page d d to be:	of this exam.			
	1 . = 136	2 . < 115	3 . = 115	4 . > 115			

Do Not Write Below This						
Exam II Score						