98 99 100 (251) 252.08 257.10

97 (248) 101 102 103 (257) 259.10 262.11

IA																	VIIIA
н				The	Pe	pric	odi	сΤ	ah	le							He
1			30	110			Jui	• •	un			111.6	11.1.0	14.0	1.22.0	1.00 0	2
1.01	IIA	1										ШA	IVA	VA	VIA	VIIA	4.00
Li	Be											в	С	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	3										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											A	Si	P	S	CI	Ar
11	12	Manager										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	1B -	IIB -	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- C	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				1971 - 115 20													
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
				Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Solubility Guidelines:

Solu	ible Ionic Compounds					
1.	All sodium, potassium and ammonium salts are soluble.					
2.	All nitrate, acetate, chlorate and perchlorate salts are soluble					
3.	All chloride, bromide and iodide salts are soluble.					
. 8	Except those that contain: lead, silver or mercury(I) (Hg2 ²⁺).					
4.	All fluoride salts are soluble.					
	Except those that contain: magnesium, calcium, strontium, barium or lead.					
5.	All sulfate salts are soluble.					
	Except those that contain: calcium, silver, mercury(I), strontium, barium or lead.					
Not	Not Soluble Ionic Compounds					
1.	All hydroxide and oxide salts are not soluble.					
	Except those that contain: sodium, potassium or barium.					
2.	All sulfide salts are not soluble.					
	Except those that contain: sodium, potassium ammonium or barium.					
3.	All carbonate and phosphate salts are not soluble.					
	Except those that contain: sodium, potassium or ammonium.					

 90
 91
 92
 93
 94
 95
 96

 232.04
 231.04
 238.03
 237.05
 (240)
 243.06
 (247)

SID	LastFirst						
Question 1 6 Points	Classify each of the following molecules as polar or nonpolar?						
	1. BeCl ₂ 3. NH ₂ Cl						
	2. IF ₃						
Question 2	There are hybrid orbitals represented by the picture on						
5101115	the left. They are composed of*						
	atomic orbitals, corresponding to hybridization. They have						
	the electron pair geometry with bond						
	angles of						
	* - Give the number of each of these orbitals that make the hybrid orbital depicted.						
Question 3 6 Points	A molecule has sp³d hybridization with 2 lone pairs : a) The electron pair geometry of this molecule is						
	b) The geometry of this molecule is						
c) The approximate bond angle in the molecule							
Question 4 6 Points	Depicted below is the sigma bonds HCECH.						
	1. The sigma bond formed between the two carbon atoms is best described as being						
	between the overlap of two hybrid orbitals.						
	2. The sigma bond formed between the hydrogen and carbon is best described as						
	being the overlap of an hybrid orbital on carbon with the orbital on						
	hydrogen.						
	3. If the pi bonds were to be depicted one would see pi bond(s).						
Question 5 4 Points	The compound iron(II) sulfate is a strong electrolyte. Write the reaction when iron(II) sulfate is put into water :						

Question 6 4 Points	Consider the reaction when aqueous solutions of aluminum sulfate and cobalt(II) nitrate are combined. The net ionic equation for this reaction is:
Question 7 4 Points	Consider the reaction when aqueous solutions of sodium carbonate and ammonium nitrate are combined. The net ionic equation for this reaction is:
Question 8 4 Points	Write a net ionic equation for the overall reaction that occurs when aqueous solutions of potassium hydroxide and hydrosulfuric acid (H ₂ S) are combined.
Question 9 4 Points	Write a net ionic equation for the reaction that occurs when excess hydrofluoric acid (HF) and calcium carbonate are combined.
Question 10 8 Points	A 41.2g sample of copper at 99.8°C is dropped into a beaker containing 153g of water at 18.5°C . What is the final temperature when thermal equilibrium is reached? <i>Assume the</i> beaker neither absorbs nor loses heat. Heat Capacities : Cu = 0.385 J/g°C H ₂ O = 4.184 J/g°C For full credit you must show work.
	° <i>C</i>

Question 11 5 Points	A sample of solid silver is heated w added to a 13.0 gram sample and t temperature of the silver? <u>For full credit you must show work.</u>	ith an electrical o he final temperat Heat Capacity : /	coil. If 33.6 Joules of energy are ture is 35.2°C , what is the initia l Ag = 0.237 J/g°C					
			0	., С				
Question 12 5 Points	The following thermochemical equators form dinitrogen monoxide(g). 2N2(g) + C How many grams of N2(g) would be For full credit you must show work.	tion is for the rea)2(g) = 2N2O(g) made to react if	action of nitrogen(g) with oxygen(g) ∆H = 164 kJ 25.0 kJ of energy were provided?) to				
			g	N₂				
Question 13 5 Points	0.927 grams of benzoic acid is burned completely in a bomb calorimeter. The bomb is surrounded by 1.000 kg of water. The temperature increases from 25.12 to 29.36 degrees Celsius. If the heat capacity of the bomb is 1.60 kJ/°C, calculate the heat of combustion of the benzoic acid in kJ/gram. The specific heat of water is 4.184 J/g°C. <u>Circle the best answer!</u>							
	∘ -9.2 kJ/gram	0	18.9 kJ/gram					
	 ○ 21.4 kJ/gram 	0	-26.5 kJ/gram					
	o −32./ kJ/gram							

(1)
$$N_2(g) + 2 O_2(g) = N_2 O_4(g)$$
 $\Delta H^\circ = 9.2 \text{ kJ}$

(2)
$$2 N_2O(g) = 2 N_2(g) + O_2(g)$$
 $\Delta H^\circ = -164.2 \text{ kJ}$

what is the standard enthalpy change for the reaction:

(3) $2 N_2O(g) + 3 O_2(g) = 2 N_2O_4(g)$ $\Delta H^\circ = ?$ For full credit you must show work.

kJ

Question 15 Using standard heats of formation given, calculate the standard enthalpy change for the following reaction:

$$4 \text{ NH}_3(g) + 5 O_2(g) = 4 \text{ NO}(g) + 6 H_2O(g)$$

 $\begin{bmatrix} \Delta H^0_f : & NH_3(g), -46 \text{ kJ/mol} & NO(g), 90 \text{ kJ/mol} & H_2O(g), -242 \text{ kJ/mol} \end{bmatrix}$

kJ

Question 16 In the following 2-D illustrations, assume that the gas molecules are in motion and that ^{4 Points} if there is a larger box it indicates a larger volume for the container holding the molecules.

- \circ A and B are at the **same temperature**. \circ B has the **highest temperature**.
- \circ A has the highest temperature.
- \circ A has a smaller average kinetic energy.

Question 17 ^{8 Points} 0.758 moles of hydrochloric acid are allowed to react with 0.416 moles of barium hydroxide.

hydrochloric acid (aq) + barium hydroxide (aq) = barium chloride (aq) + water (l)

What is the maximum amount in **grams** of **barium chloride** that can be formed? <u>For full credit you must show work.</u>

g of barium chloride

Question 18
 $^{7 \text{ Points}}$ For the following reaction, **5.03** grams of water are mixed with excess sulfur dioxide.The reaction yields 20.2 grams of sulfurous acid (H_2SO_3).

sulfur dioxide (g) + water (l) = sulfurous acid (H_2SO_3) (g)

What is the percent yield for this reaction? For full credit you must show work.

Question 19	How many grams of solid calcium hydroxide are needed to exactly neutralize 28.2 mL of
7 Points	a 0.714 M nitric acid solution ? Assume that the volume remains constant.
	For full credit you must show work.

g of calcium hydroxide

Do Not Write Below This						
Exam III Score						