
Chem 111	Summer 2012	Exam II	Whelan

IA																	VIIIA
Н	The Periodic Table									He							
1	100000			110		,,,,	Jui	C I	ab								2
1.01	IIA.											IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be	8										В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01	,										10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12	1/10000										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	5050	7236	
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Average Single Bond Lengths (Picometers)

	Н	С	Ν	0	F	Si	Р	S	CI	Br	1
Н	74	110	98	94	92	145	138	132	127	142	161
С		154	147	143	141	194	187	181	176	191	210
Ν			140	136	134	187	180	174	169	184	203
0				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
Ρ							220	214	209	224	243
S								208	203	218	237
CI									200	213	232
Br										228	247
1											266

Average Multiple Bond Lengths (Picometers)

C = C	134	$C \equiv C$	121
C = N	127	$C \equiv N$	115
C = O	122	C ≡ O	113
N = 0	115	N≡O	108

 $1 \text{ pm} = 1 \times 10^{-12} \text{ m}$

Average Single Bond Energies (kJ per mole)

	н	С	Ν	0	F	Si	Р	s	CI	Br	1
Н	436	414	389	464	569	293	318	339	431	368	297
С		347	293	351	439	289	264	259	330	276	238
Ν			159	201	272		209		201	243	
0				138	184	368	351		205		201
F					159	540	490	285	255	197	
Si						176	213	226	360	289	
Р							213	230	331	272	213
s								213	251	213	
CI					1				243	218	209
Br										192	180
1			3								151

Average Multiple Bond Energies (kJ per mole)

N = N	418	C = C	611	
$N \equiv N$	946	C ≡ C	837	
N = 0	590	C = 0	803	In CO2 Only
C ≡ N	891	C = 0	745	
0 = 0	498	C ≡ O	1075	

__ Al

Ca

Rb

Ga

Question 8 3 Points	Using only the periodic table given wo of increasing electron affinity:	with this exam arrange the following elem oxygen, fluorine, sulfur	ents in order					
		Largest	-					
Question 9	Draw the <u>best</u> Lewis Dot structure	for the following molecules						
	N ₂	XeF ₂						
	Cl₂CO	O ₃ -						
Question 10	Draw the best Lewis Dot structure for the following organic molecules							
8 Points	CH₃COCH₃	CH₃COONH₂						
Question 11 9 Points (6 Points)	Draw all <u>reasonable</u> resonance structure. Circle the best answer:							
(3 Points)	Average bond energy table is on to The O to O bond energy in kJ.mol ⁻¹							
	o = 498 o	o < 138 o = 138						
	o > 498 o	> 138						

Question 12 6 Points	Using average bond energies (given on the front of this exam), estimate the enthalpy change for the following reaction:						
	$CH_4(g) + 2 O_2(g) = CO_2$ Show Work	2(g) + 2 H ₂ O(g)					
		kJ.mol ⁻¹					
Question 13 8 Points	Assign formal charges to the elements in each of	the Lewis structures below.					
	$\begin{bmatrix} \mathbf{i} \ddot{\mathbf{c}} - \mathbf{N} = 0 \mathbf{i} \end{bmatrix}$	$\begin{bmatrix} \mathbf{c} = \mathbf{N} - \mathbf{\ddot{o}} \mathbf{c} \end{bmatrix}$					
	A	В					
	C :	<i>C</i> :					
	N :	N: O:					
	The best Lewis structure for CNO - is:						
Question 14	What is the electron-pair geometry for N in NH3						
0.101113	There are lone pair(s) around the central ato	om, so the molecular geometry of NH ₃ is					
Question 15	What is the electron-pair geometry for I in IF ₃	There are					
6 Points	lone pair(s) around the central atom, so the n						
Question 16	The planet Whelanus – far, far away in the galaxy	- is somewhat like earth. Same order of					
4 Points	elements, same order of filling orbitals, except the electrons per orbital there are $\underline{3}$. This makes for	nat Hund's rule is different. Instead of 2 a very different looking periodic table.					
	On Whelanus give the symbols for the first 2 nob	ie gases!					

Do	Not Write Below This
Exam II Score	