H			T	he	Pe	erio	odi	сΤ	ab	le							VIIIA He 2
1.01	IIA											IIIA	IVA	VA	VIA	VIIIA	4.00
Li	Be	2										В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											Al	Si	P	S	CI	Ar
11	12	MANUE.	0.012/5	2012.0	000233	2009123	Semilo?	0111112.00	9000002	12.30	7.12	13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB.	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	200		
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
				999 CF 116	A 6000	T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5040 - 15711 -	2000	3005		1971 CH 110		V 10/6 2000			
				Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu

60

144.24

U

92

232.04 231.04 238.03 237.05 (240) 243.06

140.12 140.91

91

61

(145)

Np

93

Solubility Guidelines

Soluble Ionic Compounds	Exceptions	
Sodium (Na+), potassium (K+), and ammonium (NH4+) salts		
Nitrate (NO ₃ ⁻), acetate (CH ₃ CO ₂ ⁻), chlorate (ClO ₃ ⁻), and perchlorate (ClO ₄ ⁻) salts		
Chloride (Cl ⁻), bromide (Br ⁻), and iodide (l ⁻) salts	Pb ²⁺ , Ag ⁺ , Hg ₂ ²⁺	
Fluoride (F ⁻) salts	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺	
Sulfate (SO ₄ ²⁻) salts	Ca ²⁺ , Hg ₂ ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺	

63

Am

64

Cm

96

(247)

150.36 152.97 157.25 158.93

66

Cf

98

67

(251) 252.08 257.10

68

Fm

100

162.50 | 164.93 | 167.26 | 168.93 | 173.04 | 174.97

Μd

101

(257)

70

No

102 103 259.10 262.11

71

65

Bk

97

(248)

Insoluble Ionic Compounds	Exceptions
Hydroxide (OH ⁻) and oxide (O ²⁻) compounds	Na+, K+, Ba ²⁺
Sulfide (S2-) salts	Na+, K+, NH ₄ +, Ba ²⁺
Carbonate (CO ₃ ² -) and phosphate (PO ₄ ³ -) salts	Na+, K+, NH ₄ +

SID	Last First				
Question 1 6 Points	Classify each of the following molecules as polar or nonpolar?				
	a) NO⁺: c) CH₂Cl₂:				
	b) XeF ₄ :				
Question 2 3 Points	The hypothetical molecule PY_3Z_2 has the general classification AX_5E_0 and is found to be non polar. Based on this information what can you infer as to the relative size of Y when compared to Z ?				
Question 3 3 Points	In our discussion on the consequences of molecular polarity. The depiction on the left was used to discuss:				
	o Detergents				
	○ Water dissolving KMnO ₄				
	o Fabric softeners				
	 Chelating therapy 				
Question 4 4 Points	The hybridization used to describe the bonding about the central atom in NOBr is, which makes the approximate bond angles in this molecule degrees.				
Question 5	Depicted below is the sigma bonds HCCH .				
	H C1 C2 H				
	a) The sigma bond formed between C1 and C2 is best described as being between the				
	overlap of two hybrid orbitals.				
	b) The sigma bonds formed between the hydrogen and carbon is best described as				
	being the overlap of an hybrid orbital on each carbon with the orbital				
	on the hydrogen atoms.				
	c) If the pi bonds were to be depicted one would see pi bond(s).				
Question 6	The bonding in a molecule is best described using sp3d hybridization. The electron pair				
3 Points	geometry of this molecule is:				

Question 7 3 Points	Classify each of the compounds as <u>soluble</u> (s) or <u>not soluble</u> (ns):					
	Zinc sulfate: Calcium carbonate: Silver(I) acetate:					
Question 8 3 Points	Write a balanced chemical equation for the reaction that occurs when aqueous solutions of silver(I) nitrate and nickel(II) chloride are combined: =					
Question 9 3 Points	Write the net ionic equation for the reaction that takes place when aqueous solutions of ammonium sulfide and chromium(III) chloride are mixed.					
Question 10 3 Points	Write a net ionic equation for the reaction that occurs when aqueous solutions of sodium hydroxide and perchloric acid are combined.					
Question 11 3 Points	Write a net ionic equation for the reaction that occurs when a hydrochloric acid (aq) and chromium(II) sulfide (s) are combined.					
Question 12 8 Points	A chunk of silver weighing 19.7 grams and originally at 97.48°C is dropped into an insulated cup containing 76.6 grams of water at 23.38°C. Assuming that all of the heat is transferred to the water, calculate the final temperature of the water.					
	Heat Capacity: $H_2O = 4.184 \text{ J/g}^{\circ}C$					

Question	13
4 Points	

The reaction of iron(III) oxide(s) with hydrogen(g) to form iron(s) and water(g) proceeds as follows:

$$Fe_2O_3(s) + 3H_2(g) = 2Fe(s) + 3H_2O(g)$$

When 56.5 grams of Fe₂O₃(s) react with sufficient $H_2(g)$, 35.0 kJ of energy are absorbed. What is the value of ΔH for the reaction per mole of Fe₂O₃?

For full credit you must show work.

	k.

Question 14 8 Points

When 0.32g of hydrazine (N_2H_4) is burned in a bomb calorimeter containing 600g of water the temperature of the water increases by $1.8^{\circ}C$. Calculate the heat of combustion of hydrazine in $J.mol^{-1}$

Heat Capacities: $H_2O = 4.184 \text{ J/g}^{\circ}C$ Calorimeter = 420 $\text{J/}^{\circ}C$

For full credit you must show work.

Question 15
4 Points

Given the standard enthalpy changes for the following two reactions:

- (1) $2 C(s) + 2 H_2(g) = C_2 H_4(g) \dots \Delta H^\circ = 52.3 \text{ kJ}$
- (2) $2 C(s) + 3 H_2(g) = C_2 H_6(g) \dots \Delta H^0 = -84.7 \text{ kJ}$

what is the standard enthalpy change for the reaction:

(3)
$$C_2H_4(q) + H_2(q) = C_2H_6(q) \dots \Delta H^0 = ?$$

For full credit you must show work.

kJ

Question 16
4 Points

Using standard heats of formation given below, calculate the standard enthalpy change for the following reaction.

$$2NO(g) + 2H_2(g) = N_2(g) + 2H_2O(l)$$

$$\Delta H^{\circ}_{f}$$
: NO(g) = 90.3 kJ.mol⁻¹ $H_{2}O(I)$ = -285.8 kJ.mol⁻¹

kJ

Question 17
4 Points

A 0.884 mol sample of O_2 gas is confined in a 21.0 liter container at 16.2°C. If the temperature of the gas sample is decreased to -1.10°C, holding the volume constant, the pressure will decrease because:

Choose all that apply

- With higher average speeds, the molecules hit the walls of the container more often.
- o At lower temperatures molecules have lower average speeds.
- o As the average speed increases, the number of molecule-wall collisions decreases.
- With lower average speeds, on average the molecules hit the walls of the container with less force.

Question 18	You need to make an aqueous solution of 0.142M calcium nitrate for an experiment in lab,
5 Points	using a 250mL volumetric flask. How much solid calcium nitrate should you add?
	For full credit you must show work.
	g
Question 19	For the following reaction, 0.355 moles of carbon disulfide are mixed with 0.579 moles
5 Points	
0 1 0 11113	of chlorine gas.
	carbon disulfide (s) + chlorine (g) = carbon tetrachloride (l) + sulfur dichloride (s)
	What is the maximum amount of carbon tetrachloride that can be produced?
	For full credit you must show work and give balanced chemical equation(s).
	mol
	MUI

Do	Not Write Below This
Exam III Score	