$1 / \mathrm{A}$	IIA																V/IIA
$\begin{gathered} \mathrm{H} \\ 1 \end{gathered}$		The Periodic Table															He 2
1.01												IIIA	IVA	VA	V/A	V//A	4.00
Li_{3}	Be 4											B	C	N 7	0 8	F 9	Ne 10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	Cl	Ar
11	12											13	14	15	16	17	18
22.99	24.31	IMB	IVB	VB	V/B	V/IB	$1 / m B$	V/IMB	V/me	is	$1 / \mathrm{B}$	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	38.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup			
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	$\mathbf{1 4 0 . 9 1}$	$\mathbf{1 4 4 . 2 4}$	(145)	$\mathbf{1 5 0 . 3 6}$	152.97	157.25	$\mathbf{1 5 8 . 9 3}$	162.50	164.93	$\mathbf{1 6 7 . 2 6}$	168.93	$\mathbf{1 7 3 . 0 4}$	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	$\mathbf{1 0 2}$	$\mathbf{1 0 3}$
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Solubility Guidelines

Soluble Ionic Compounds	Exceptions
Sodium (Na^{+}), potassium (K^{+}), and ammonium ($\mathrm{NH}_{4}{ }^{+}$) salts	
Nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$, acetate $\left(\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}\right)$, chlorate $\left(\mathrm{ClO}_{3}{ }^{-}\right)$, and perchlorate $\left(\mathrm{ClO}_{4}^{-}\right)$salts	
Chloride (Cl^{-}-), bromide (Br^{-}), and iodide (l^{-}) salts	$\mathrm{Pb}^{2+}, \mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$
Fluoride (F^{-}) salts	$\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$
Sulfate ($\mathrm{SO}_{4}{ }^{2-}$) salts	$\mathrm{Ca}^{2+}, \mathrm{Hg}_{2}{ }^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$

Insoluble lonic Compounds	Exceptions
Hydroxide $\left(\mathrm{OH}^{-}\right)$and oxide $\left(\mathrm{O}^{2-}\right)$ compounds	$\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Ba}^{2+}$
Sulfide $\left(\mathrm{S}^{2-}\right)$ salts	$\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{Ba}^{2+}$
Carbonate $\left(\mathrm{CO}_{3}^{2-}\right)$ and phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ salts	$\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{NH}_{4}^{+}$

\square
\qquad
\qquad

Question 1 6 Points

Question 2 3 Points

Question 3
3 Points

Question 4 4 Points

Question 5 6 Points

Question 6 3 Points

Classify each of the following molecules as polar or nonpolar?
a) NO^{+}: \qquad c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$:
b) XeF_{4} : \qquad
\qquad

The hypothetical molecule $\mathrm{PY}_{3} \mathrm{Z}_{2}$ has the general classification $A X_{5} \mathrm{E}_{0}$ and is found to be non polar. Based on this information what can you infer as to the relative size of Y when compared to \mathbf{Z} ?

In our discussion on the consequences of molecular polarity. The depiction on the left was used to discuss:
o Detergents
o Water dissolving KMnO_{4}
o Fabric softeners
o Chelating therapy

The hybridization used to describe the bonding about the central atom in NOBr is
\qquad , which makes the approximate bond angles in this molecule \qquad degrees.

Depicted below is the sigma bonds HCCH .

a) The sigma bond formed between $C 1$ and $C 2$ is best described as being between the overlap of two \qquad hybrid orbitals.
b) The sigma bonds formed between the hydrogen and carbon is best described as being the overlap of an \qquad hybrid orbital on each carbon with the \qquad orbital on the hydrogen atoms.
c) If the pi bonds were to be depicted one would see \qquad pi bond(s).

The bonding in a molecule is best described using sp3d hybridization. The electron pair geometry of this molecule is: \qquad

Question 7
3 Points

Question 8 3 Points

Question 9 3 Points

Question 10
3 Points

Question 11 3 Points

Classify each of the compounds as soluble (s) or not soluble (ns):

Zinc sulfate: \qquad Calcium carbonate: \qquad Silver(I) acetate: \qquad
Write a balanced chemical equation for the reaction that occurs when aqueous solutions of silver(I) nitrate and nickel(II) chloride are combined:
\qquad $=$ \qquad
Write the net ionic equation for the reaction that takes place when aqueous solutions of ammonium sulfide and chromium(III) chloride are mixed.
\qquad $=$ \qquad
Write a net ionic equation for the reaction that occurs when aqueous solutions of sodium hydroxide and perchloric acid are combined.
\qquad $=$ \qquad
Write a net ionic equation for the reaction that occurs when a hydrochloric acid (aq) and chromium(II) sulfide (s) are combined.

$$
=
$$

\qquad
Question 12 8 Points

A chunk of silver weighing 19.7 grams and originally at $97.48^{\circ} \mathrm{C}$ is dropped into an insulated cup containing 76.6 grams of water at $23.38^{\circ} \mathrm{C}$. Assuming that all of the heat is transferred to the water, calculate the final temperature of the water.

Heat Capacity : $\quad \mathrm{H}_{2} \mathrm{O}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

$$
A g=0.237 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}
$$

Question 13
4 Points

The reaction of iron(III) oxide(s) with hydrogen(g) to form iron(s) and water(g) proceeds as follows:

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})=2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

When 56.5 grams of $\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ react with sufficient $\mathrm{H}_{2}(\mathrm{~g}), 35.0 \mathrm{~kJ}$ of energy are absorbed. What is the value of ΔH for the reaction per mole of $\mathrm{Fe}_{2} \mathrm{O}_{3}$?

For full credit you must show work.

Question 14
8 Points

When 0.32 g of hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ is burned in a bomb calorimeter containing 600 g of water the temperature of the water increases by $1.8^{\circ} \mathrm{C}$. Calculate the heat of combustion of hydrazine in J.mol ${ }^{-1}$

Heat Capacities: $\quad \mathrm{H}_{2} \mathrm{O}=4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

Calorimeter $=420 \mathrm{~J} /{ }^{\circ} \mathrm{C}$
For full credit you must show work.

Question 15
4 Points

Given the standard enthalpy changes for the following two reactions:
(1) $2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}) \ldots . . . \Delta \mathrm{H}^{0}=52.3 \mathrm{~kJ}$
(2) $2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \ldots . . . \Delta \mathrm{H}^{0}=-84.7 \mathrm{~kJ}$
what is the standard enthalpy change for the reaction:
(3)

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})=\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \ldots . . . \Delta \mathrm{H}^{\circ}=?
$$

For full credit you must show work.

Question 16
4 Points

Using standard heats of formation given below, calculate the standard enthalpy change for the following reaction.

$$
2 \mathrm{NO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})=\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\Delta H^{\circ}{ }_{f}: \quad N O(g)=90.3 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \quad \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-285.8 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}
$$

Question 17 4 Points

A 0.884 mol sample of O_{2} gas is confined in a 21.0 liter container at $16.2^{\circ} \mathrm{C}$. If the temperature of the gas sample is decreased to $-1.10^{\circ} \mathrm{C}$, holding the volume constant, the pressure will decrease because:

Choose all that apply

- With higher average speeds, the molecules hit the walls of the container more often.
- At lower temperatures molecules have lower average speeds.
- As the average speed increases, the number of molecule-wall collisions decreases.
o With lower average speeds, on average the molecules hit the walls of the container with less force.

Question 18 5 Points

You need to make an aqueous solution of 0.142 M calcium nitrate for an experiment in lab, using a 250 mL volumetric flask. How much solid calcium nitrate should you add?

Question 19
5 Points
\qquad For full credit you must show work. 9

For the following reaction, 0.355 moles of carbon disulfide are mixed with 0.579 moles of chlorine gas.
carbon disulfide (s) + chlorine (g) = carbon tetrachloride (I) + sulfur dichloride (s) What is the maximum amount of carbon tetrachloride that can be produced?

For full credit you must show work and give balanced chemical equation(s).

Question 20 8 Points

For the following reaction, 3.86 grams of oxygen gas are mixed with excess nitrogen gas. The reaction yields 5.81 grams of nitrogen monoxide.
nitrogen (g) + oxygen (g) = nitrogen monoxide (g)
What is the percent yield for this reaction?
For full credit you must show work and give balanced chemical equation(s).

Question 21 10 Points
47.2 mL of 0.113 M hydrobromic acid is added to 21.4 mL of calcium hydroxide, and the resulting solution is found to be acidic.
29.8 mL of 0.0862 M sodium hydroxide is required to reach neutrality.

What is the molarity of the original calcium hydroxide solution?
For full credit you must show work and give balanced chemical equation(s).

