IA																			VIIIA
H			Г	The	Pe	eri	od	lic	: T	ab	le								He
1.01	IIA								50					IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be													в	С	N	0	F	Ne
3	4													5	6	7	8	9	10
6.94	9.01													10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg													AI	SI	P	S	CI	Ar
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIII	в	VIIIB	VIIIB	IB.	1	B	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	F	e	Co	Ni	C	1 Z	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	5	27	28	29		30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.4	85 !	58.93	58.69	63.5	5 65	5.39	69.72	72.61	74.92	78.96	79.90	83.80
27	5r 29	20		ND	NIO 42	10	R	u	Rh	Pd	A		49	10	Sn	SD 54	1 e	53	Xe 54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.	07 1	40	106.42	107.	87 11	+0 2.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Та	W	Re	0	s	Ir	Pt	Au	ı F	lg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	5	77	78	79		80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190	.2 1	92.22	195.08	197.	97 20	0.59	204.38	207.2	208.98	(209)	(210)	(222)
PT 97	Ra	AC	RT	Db	Sg	Bh	10	S		DS	R		ub	Jut	Uuq	Uup			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(26	5)	(266)	(271)	(27)	2) (2	85)	(284)	(289)	(288)			
	N		8735 - Sissi	ander ook Se	28 - 200 			20000	1	sen de	193.95 	1.000		anta di . N	3980 - 589 	2 - 20 - 20 - -			
				Ce	Pr	Nd	Pr	n	Sm	Eu	G	1 1	۲b	Dy	Ho	Er	Tm	Yb	Lu
				58	59	60	61		62	63	64	25 45	65	66	67	68	69	70	71
				140.12	140.91 Do	144.24		o) 1	50.36 D11	152.97	157.	29 19	0.93	102.50	104.93	107.20	100.93	173.04	1/4.9/
				90	91	92	93	3	94	95	96	2 3	97	98	99	100	101	102	103
				232.04	231.04	238.03	237.	.05	(240)	243.06	(24)	7) (2	48)	(251)	252.08	257.10	(257)	259.10	262.11
		1	A						Cr									84	
		-	A						Gre	Sup								oA	
		1	15 2/	A										3A	4A	5A 6	A 7A	15	
		2	1200											4		20		6	
		4	1 28 2											-		- 20	-	0	
		3	35	3B	4B	5B (6B	7B	8B	8B	8B	1B	2B			3p			
	Period	14	45	1			See	3	d				10			4p			
	•	-	1								1		2			50			
		3	35																
		6	65					5	d		S. 1					6p			
		7	75					(d										
			-		1/				-										
				10							1-1-1					100			
					1							41					14		
				1					100			5f							

Average Single Bond Lengths (Picometers)

	н	С	Ν	0	F	Si	Р	S	CI	Br	1
н	74	110	98	94	92	145	138	132	127	142	161
С		154	147	143	141	194	187	181	176	191	210
Ν			140	136	134	187	180	174	169	184	203
0				132	130	183	176	170	165	180	199
F					128	181	174	168	163	178	197
Si						234	227	221	216	231	250
Р							220	214	209	224	243
s								208	203	218	237
СІ									200	213	232
Br										228	247
L							1				266

Average Multiple Bond Lengths (Picometers)

C = C	134	$C \equiv C$	121
C = N	127	C ≡ N	115
C = 0	122	C ≡ O	113
N = 0	115	N≡0	108

 $1 \text{ pm} = 1 \times 10^{-12} \text{ m}$

	н	С	Ν	0	F	Si	Р	s	CI	Br	1
н	436	414	389	464	569	293	318	339	431	368	297
С		347	293	351	439	289	264	259	330	276	238
Ν			159	201	272		209		201	243	
0				138	184	368	351		205		201
F					159	540	490	285	255	197	
Si						176	213	226	360	289	
Ρ							213	230	331	272	213
s								213	251	213	
CI								1	243	218	209
Br										192	180
Т								1			151

Average Single Bond Energies (kJ per mole)

Average Multiple Bond Energies (kJ per mole)

N = N	418	C = C	611	
$N \equiv N$	946	$C \equiv C$	837	
N = 0	590	C = 0	803	In CO ₂ Only
C ≡ N	891	C = 0	745	
0 = 0	498	C ≡ O	1075	

SID	Last First
Question 1 4 Points	 a) The orbital depicted on the left is what type of orbital? b) Based on its Radial Distribution depicted on the right you can label this orbital as?
Question 2 4 Points	 a) Which of the orbitals depicted has the highest n value? b) Which of the orbitals depicted has the greatest force of attraction?
Question 3	Write the complete electron configuration for the following
	a) P: c) Al ³⁺ :
	b) Sc: d) S ²⁻ :
Question 4 6 Points	Using Noble Gas notation write the electron configuration for a) Xe:
Question 5 3 Points	The element with electronic configuration, [Ar]4s²3d¹⁰4p ⁵ , has valence electrons.
Question 6 3 Points	How many diamagnetic elements would you expect in period 6?
Question 7 5 Points	Using only the periodic table given with this exam rank the following elements from 1 to 5 in order of increasing ionization energy (1 being the smallest ionization energy and 5 the largest ionization energy).
	B Ca N Rb Ga
Question 8 3 Points	Li, Na and K belong to group IA and as we know like to lose an electron. However if one of these were to gain an electron which one would it most likely be?
Question 9 2 Points	The Lewis diagram on the right represents the valence electron configuration of a main-group element . If this element is in period 4 , its valence electron configuration is?

Question 10	Draw the best Lewis Dot structure for the following molecules.								
	со	F₂CO							
	CIO_3^- (Cl = Chlorine)	XeF₄							
Question 11	Draw the best Lewis Dot structure for the following organic molecules .								
	CH₃COH	HCOOCH₃							
Question 12 8 Points	Draw all reasonable resonance structures for NO2F								
	Circle the best answer: <i>Average bond lengths is given on the back of t</i>	he Periodic Table acco	mpanying this exam.						
	The N to O bond length in pm is expected to b	e:							
	1. = 136pm 2. < 115pm	3. = 115pm	4. > 115pm						

1.	List the structure(s) whose only bond angle is ~180°

2. List the **structures(s)** whose **epg** is/are **trigonal planar**:

F

3. Give the electron pair geometry (epg) for:

:Br

=F

Ε

В:	<i>C</i> :
F:	
4. Give the molecular geometry for:	
С:	E:

:F

F:

CI

:F:

G

:0:

Н

-н

H-C

Do Not Write Below This

Exam II Score