
| Chem 111 | Summer 2014 | Exam II | Whelan |
|----------|-------------|---------|--------|
| IA .     |             | 2.2     | VIIIA  |

| IA     | 1      |        |        | 0842   | 57     | 02.0   | 1900   | 02-0   | 2 20 1 |        |        |        |        |        |        |        | VIIIA  |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| H      |        |        | 1      | 'he    | Pe     | erio   | odi    | сΤ     | ab     | le     |        |        |        |        |        |        | He     |
| 1.01   | IIA    |        |        |        |        |        |        |        |        |        |        | IIIA   | IVA    | VA     | VIA    | VIIA   | 4.00   |
| Li     | Be     | l l    |        |        |        |        |        |        |        |        |        | В      | C      | N      | 0      | F      | Ne     |
| 3      | 4      |        |        |        |        |        |        |        |        |        |        | 5      | 6      | 7      | 8      | 9      | 10     |
| 6.94   | 9.01   | l,     |        |        |        |        |        |        |        |        |        | 10.81  | 12.01  | 14.01  | 16.00  | 19.00  | 20.18  |
| Na     | Mg     |        |        |        |        |        |        |        |        |        |        | AI     | Si     | P      | S      | CI     | Ar     |
| 11     | 12     | Marian |        |        |        |        |        |        |        |        |        | 13     | 14     | 15     | 16     | 17     | 18     |
| 22.99  | 24.31  | IIIB   | IVB    | VB     | VIB    | VIIB   | VIIIB  | VIIIB  | VIIIB  | IB .   | IIB    | 26.98  | 28.09  | 30.97  | 32.07  | 35.45  | 39.95  |
| K      | Ca     | Sc     | Ti     | V      | Cr     | Mn     | Fe     | Co     | Ni     | Cu     | Zn     | Ga     | Ge     | As     | Se     | Br     | Kr     |
| 19     | 20     | 21     | 22     | 23     | 24     | 25     | 26     | 27     | 28     | 29     | 30     | 31     | 32     | 33     | 34     | 35     | 36     |
| 39.10  | 40.08  | 44.96  | 47.88  | 50.94  | 52.00  | 54.94  | 55.85  | 58.93  | 58.69  | 63.55  | 65.39  | 69.72  | 72.61  | 74.92  | 78.96  | 79.90  | 83.80  |
| Rb     | Sr     | Y      | Zr     | Nb     | Mo     | Tc     | Ru     | Rh     | Pd     | Ag     | Cd     | In     | Sn     | Sb     | Te     |        | Xe     |
| 37     | 38     | 39     | 40     | 41     | 42     | 43     | 44     | 45     | 46     | 47     | 48     | 49     | 50     | 51     | 52     | 53     | 54     |
| 85.47  | 87.62  | 88.91  | 91.22  | 92.91  | 95.94  | (97.9) | 101.07 | 102.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60 | 126.90 | 131.29 |
| Cs     | Ba     | La     | Hf     | Ta     | W      | Re     | Os     | - Ir   | Pt     | Au     | Hg     | TI     | Pb     | Bi     | Po     | At     | Rn     |
| 55     | 56     | 57     | 72     | 73     | 74     | 75     | 76     | 77     | 78     | 79     | 80     | 81     | 82     | 83     | 84     | 85     | 86     |
| 132.91 | 137.33 | 138.91 | 178.49 | 180.95 | 183.85 | 186.21 | 190.2  | 192.22 | 195.08 | 197.97 | 200.59 | 204.38 | 207.2  | 208.98 | (209)  | (210)  | (222)  |
| Fr     | Ra     | Ac     | Rf     | Db     | Sg     | Bh     | Hs     | Mt     | Ds     | Rg     | Uub    | Uut    | Uuq    | Uup    | 200    |        |        |
| 87     | 88     | 89     | 104    | 105    | 106    | 107    | 108    | 109    | 110    | 111    | 112    | 113    | 114    | 115    |        |        |        |
| 223.02 | 226.03 | 227.03 | (261)  | (262)  | 263)   | (262)  | (265)  | (266)  | (271)  | (272)  | (285)  | (284)  | (289)  | (288)  |        |        |        |

| Ce     | Pr     | Nd     | Pm     | Sm     | Eu     | Gd     | Tb     | Dy     | Но     | Er     | Tm     | Yb     | Lu     |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 58     | 59     | 60     | 61     | 62     | 63     | 64     | 65     | 66     | 67     | 68     | 69     | 70     | 71     |
| 140.12 | 140.91 | 144.24 | (145)  | 150.36 | 152.97 | 157.25 | 158.93 | 162.50 | 164.93 | 167.26 | 168.93 | 173.04 | 174.97 |
| Th     | Pa     | U      | Np     | Pu     | Am     | Cm     | Bk     | Cf     | Es     | Fm     | Md     | No     | Lr     |
| 90     | 91     | 92     | 93     | 94     | 95     | 96     | 97     | 98     | 99     | 100    | 101    | 102    | 103    |
| 232.04 | 231.04 | 238.03 | 237.05 | (240)  | 243.06 | (247)  | (248)  | (251)  | 252.08 | 257.10 | (257)  | 259.10 | 262.11 |



## **Average Single Bond Lengths (Picometers)**

|    | Н  | С   | Ν   | 0   | F   | Si  | Ρ   | S   | CI  | Br  | 1   |
|----|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Н  | 74 | 110 | 98  | 94  | 92  | 145 | 138 | 132 | 127 | 142 | 161 |
| С  |    | 154 | 147 | 143 | 141 | 194 | 187 | 181 | 176 | 191 | 210 |
| Ν  |    |     | 140 | 136 | 134 | 187 | 180 | 174 | 169 | 184 | 203 |
| 0  |    |     |     | 132 | 130 | 183 | 176 | 170 | 165 | 180 | 199 |
| F  |    |     |     |     | 128 | 181 | 174 | 168 | 163 | 178 | 197 |
| Si |    |     |     |     |     | 234 | 227 | 221 | 216 | 231 | 250 |
| Ρ  |    |     |     |     |     |     | 220 | 214 | 209 | 224 | 243 |
| S  |    |     |     |     |     |     |     | 208 | 203 | 218 | 237 |
| CI |    |     |     |     |     |     |     |     | 200 | 213 | 232 |
| Br |    |     |     |     |     |     |     |     |     | 228 | 247 |
| 1  |    |     |     |     |     |     |     |     |     |     | 266 |

# Average Multiple Bond Lengths (Picometers)

| C = C | 134 | $C \equiv C$ | 121 |
|-------|-----|--------------|-----|
| C = N | 127 | C≡N          | 115 |
| C = 0 | 122 | C ≡ O        | 113 |
| N = 0 | 115 | N≡O          | 108 |

 $1 \text{ pm} = 1 \times 10^{-12} \text{ m}$ 

### Average Single Bond Energies (kJ per mole)

|    | Н   | С   | Ν   | 0   | F   | Si  | Ρ   | s   | CI  | Br  | 1   |
|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Н  | 436 | 414 | 389 | 464 | 569 | 293 | 318 | 339 | 431 | 368 | 297 |
| С  |     | 347 | 293 | 351 | 439 | 289 | 264 | 259 | 330 | 276 | 238 |
| Ν  | 20  |     | 159 | 201 | 272 |     | 209 |     | 201 | 243 |     |
| 0  |     |     |     | 138 | 184 | 368 | 351 |     | 205 |     | 201 |
| F  |     |     |     |     | 159 | 540 | 490 | 285 | 255 | 197 |     |
| Si |     |     |     |     |     | 176 | 213 | 226 | 360 | 289 |     |
| Ρ  | 90  |     |     |     |     |     | 213 | 230 | 331 | 272 | 213 |
| S  |     |     |     |     |     |     |     | 213 | 251 | 213 |     |
| CI |     |     |     |     |     |     |     |     | 243 | 218 | 209 |
| Br |     |     |     |     |     |     |     |     |     | 192 | 180 |
| I  |     |     |     |     |     |     |     |     |     |     | 151 |

# Average Multiple Bond Energies (kJ per mole)

| N = N        | 418 | C = C | 611  |             |
|--------------|-----|-------|------|-------------|
| $N \equiv N$ | 946 | C ≡ C | 837  |             |
| N = 0        | 590 | C = 0 | 803  | In CO2 Only |
| C ≡ N        | 891 | C = 0 | 745  |             |
| 0 = 0        | 498 | C ≡ O | 1075 |             |

| SID              |      | Last First                                                                                                                                             |  |  |  |  |  |  |  |  |
|------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Questi<br>3 Poin |      | Each of the orbitals depicted has the <b>lowest</b> value of <b>n</b> possible <b>for its type</b> . Which one has the <b>highest n</b> value?         |  |  |  |  |  |  |  |  |
|                  |      | * 00 8                                                                                                                                                 |  |  |  |  |  |  |  |  |
|                  |      | a b c                                                                                                                                                  |  |  |  |  |  |  |  |  |
| Questi<br>4 Poir |      | a) The orbital depicted on the left is what type of orbital?  b) Based on its Radial Distribution depicted on the right you can label this orbital as? |  |  |  |  |  |  |  |  |
| Questi<br>4 Poin |      | I am an <b>orbital</b> belong to a family whose $\mathbf{m}_l$ values are -2, -1, 0, +1,+2 therefore I am                                              |  |  |  |  |  |  |  |  |
|                  |      | a(n) type orbital. I have a grand total of 5 nodes, therefore my principal                                                                             |  |  |  |  |  |  |  |  |
|                  |      | quantum number (n) is Apart from me there are a total of other                                                                                         |  |  |  |  |  |  |  |  |
|                  |      | orbital's that have this same principal quantum number. <b>Combined</b> we can accommodate a <b>total</b> of <b>electrons</b> .                        |  |  |  |  |  |  |  |  |
| Questi<br>6 Poin |      | Give the complete electronic configuration for the following:                                                                                          |  |  |  |  |  |  |  |  |
|                  |      | a. P b. Al <sup>3+</sup>                                                                                                                               |  |  |  |  |  |  |  |  |
| Questi<br>4 Poin |      | How many unpaired electrons are in the Fe atom?  Therefore Fe is parmagnetic or diamagnetic?                                                           |  |  |  |  |  |  |  |  |
| Questi<br>6 Poin |      | Give the noble gas configuration for the following                                                                                                     |  |  |  |  |  |  |  |  |
| OFOIR            | 1115 | a. <b>Kr</b> c. <b>Cu</b>                                                                                                                              |  |  |  |  |  |  |  |  |
|                  |      | b. <b>Ni</b> <sup>2+</sup>                                                                                                                             |  |  |  |  |  |  |  |  |
| Questi<br>4 Poir |      | Using only the periodic table arrange the following elements in order of increasing atomic radius: $Na^+$ , $F^-$ , $O^{2-}$ , $Mg^{2+}$               |  |  |  |  |  |  |  |  |
|                  |      | smallest                                                                                                                                               |  |  |  |  |  |  |  |  |

| Question 8 6 Points     | <ul> <li>a) Using only the periodic table arrange atomic size: S, Ca, F, Mg</li> </ul>                          | the following elements in order of increasing |  |  |  |  |  |  |  |
|-------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--|--|--|--|--|--|--|
|                         | smallest                                                                                                        | largest                                       |  |  |  |  |  |  |  |
|                         | b) Which one has the greatest Electron A                                                                        | Affinity:                                     |  |  |  |  |  |  |  |
|                         | c) Which one has the smallest first ioniz                                                                       | ation energy:                                 |  |  |  |  |  |  |  |
| Question 9 3 Points     | Using only the periodic table arrange the foll ionization energy: bromine, potassi                              | <del>-</del>                                  |  |  |  |  |  |  |  |
|                         | largest                                                                                                         | smallest                                      |  |  |  |  |  |  |  |
| Question 10             | Draw the <u>best</u> Lewis Dot structure for the following                                                      |                                               |  |  |  |  |  |  |  |
|                         | CIO2 (Cl=Chlorine)                                                                                              | HFCO                                          |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |
|                         | BF <sub>3</sub>                                                                                                 | XeF <sub>2</sub>                              |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |
| Question 11<br>4 Points | Draw the <u>best</u> Lewis Dot structure for <b>the f</b><br>provided and then <b>classify each as either a</b> |                                               |  |  |  |  |  |  |  |
|                         | a) <b>NO</b> <sub>2</sub>                                                                                       | c) <b>BrO</b> <sub>2</sub>                    |  |  |  |  |  |  |  |
|                         | b) <b>CIO</b> 2 <sup>-</sup> (Cl = chlorine)                                                                    | d) <b>CIO</b> <sub>2</sub>                    |  |  |  |  |  |  |  |
| Question 12<br>6 Points | Draw the <u>best</u> Lewis Dot structure for the fo                                                             | ollowing organic molecules                    |  |  |  |  |  |  |  |
|                         | CH₃COCH₃                                                                                                        | C₂H₂                                          |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |
|                         |                                                                                                                 |                                               |  |  |  |  |  |  |  |

|                                 |                        |                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                     |  |  |  |
|---------------------------------|------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------|--|--|--|
| Question 13 8 Points (6 Points) | Circle<br><i>Averd</i> | the best answer:<br>age bond length tab | nance structure for Note is on the front point of the control of t | page of this exam.              |                                     |  |  |  |
|                                 |                        | <b>1</b> . = 136                        | 2. > 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>3</b> . = 115                | <b>4</b> . > 136                    |  |  |  |
| Question 14<br>4 Points         | _                      | _                                       | energy table on the<br>ed with the following<br>N2(g) + 3 H2(g)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | g reaction.                     | s <i>exam</i> , <b>estimate</b> the |  |  |  |
|                                 |                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                     |  |  |  |
| Question 15<br>18 Points        |                        | о́=n=ö <sup>¬+</sup>                    | Br→i,-Br:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :F:<br>:F:<br>:F:<br>:F:<br>:F: | :d: :d:<br>:d:                      |  |  |  |
|                                 |                        | :Ö— N=Ö                                 | <b>F</b><br>Н−ö−н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :0:<br>-<br>:0:                 | H—8—H                               |  |  |  |
|                                 | 1.                     | List the <b>structure</b>               | (s) whose only bond o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | angle is <b>180</b> 0           |                                     |  |  |  |
|                                 |                        |                                         | pair geometry (epg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 |                                     |  |  |  |
|                                 | <b>— •</b>             | <u>A</u> :                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                 |                                     |  |  |  |
|                                 |                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>C</u> :<br><u>E</u> :        |                                     |  |  |  |
|                                 | 3                      | Give the molecular                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>=</u> ·                      |                                     |  |  |  |
|                                 | <b>.</b>               |                                         | geometry to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F:                              |                                     |  |  |  |
|                                 |                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                               |                                     |  |  |  |
|                                 |                        | <b>=</b>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4</b> .                      |                                     |  |  |  |

| A resonance structure of <b>CNO</b> <sup>-</sup> is given below:   |  |  |  |  |  |  |  |
|--------------------------------------------------------------------|--|--|--|--|--|--|--|
| Give the formal charge on:                                         |  |  |  |  |  |  |  |
| [::: N = O:] C N O                                                 |  |  |  |  |  |  |  |
| What is the <b>predicted bond angle</b> about the following atoms? |  |  |  |  |  |  |  |
| a) Nitrogen 1 b) Nitrogen 2                                        |  |  |  |  |  |  |  |
|                                                                    |  |  |  |  |  |  |  |

| Do            | Not Write Below T | This |  |
|---------------|-------------------|------|--|
| Exam II Score |                   |      |  |