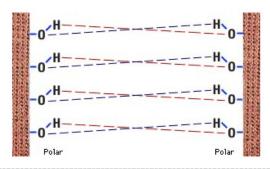
H 1			7	The	Pe	eric	odi	c T	ab	le							VIIIA He 2
1.01	IIA	1										IIIA	IVA	VA	VIA	VIIA	4.00
Li	Be											В	C	N	0	F	Ne
3	4											5	6	7	8	9	10
6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
Na	Mg											AI	Si	P	S	CI	Ar
11	12	0.7000000										13	14	15	16	17	18
22.99	24.31	IIIB	IVB	VB	VIB	VIIB	VIIIB	VIIIB	VIIIB	IB .	IIB	26.98	28.09	30.97	32.07	35.45	39.95
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
85.47	87.62	88.91	91.22	92.91	95.94	(97.9)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
Cs	Ba	La	Hf	Ta	W	Re	Os	lr i	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
132.91	137.33	138.91	178.49	180.95	183.85	186.21	190.2	192.22	195.08	197.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	500		
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
223.02	226.03	227.03	(261)	(262)	263)	(262)	(265)	(266)	(271)	(272)	(285)	(284)	(289)	(288)			
			NYCE STORY	V2162 116	33 2000 32 33	2570	200	(2) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A	180	3.75	3725 33041	99162 (16) 30-	3000 V200	2000			
					1 march 100		The second of	The second second		-						2.71	1

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
58	59	60	61	62	63	64	65	66	67	68	69	70	71
140.12	140.91	144.24	(145)	150.36	152.97	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
90	91	92	93	94	95	96	97	98	99	100	101	102	103
232.04	231.04	238.03	237.05	(240)	243.06	(247)	(248)	(251)	252.08	257.10	(257)	259.10	262.11

Solubility Guidelines

Soluble Ionic Compounds	Exceptions			
Sodium (Na+), potassium (K+), and ammonium (NH4+) salts				
Nitrate (NO ₃ ⁻), acetate (CH ₃ CO ₂ ⁻), chlorate (ClO ₃ ⁻), and perchlorate (ClO ₄ ⁻) salts				
Chloride (Cl ⁻), bromide (Br ⁻), and iodide (l ⁻) salts	Pb ²⁺ , Ag ⁺ , Hg ₂ ²⁺			
Fluoride (F ⁻) salts	Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺			
Sulfate (SO ₄ ²⁻) salts	Ca ²⁺ , Hg ₂ ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺			

Insoluble Ionic Compounds	Exceptions		
Hydroxide (OH ⁻) and oxide (O ²⁻) compounds	Na+, K+, Ba ²⁺		
Sulfide (S2-) salts	Na+, K+, NH ₄ +, Ba ²⁺		
Carbonate (CO ₃ ² -) and phosphate (PO ₄ ³ -) salts	Na+, K+, NH ₄ +		


Heats of Formation:

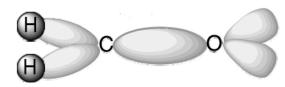
Question 1 8 Points

Classify each of the following molecules as polar or nonpolar?

Question 2 4 Points

In our discussion on the consequences of molecular polarity, the diagram depicted below was used to discuss:

- a) Membranes
- b) Micelle action
- c) Fabric softeners
- d) Like dissolves like
- e) Detergents


Question 3 9 Points

A molecule has sp³d² hybridization with 2 lone pairs.

- a) The electron pair geometry of this molecule is:
- b) The molecular geometry of this molecule is:
- c) Molecule will have an approximate bond angle(s) of:

Question 4 8 Points

Depicted below are the sigma bonds in formaldehyde (H_2CO).

- a) The sigma bond formed between the carbon and oxygen atoms is best described as being between the overlap of a(n) _____ hybrid orbital on C with a(n) _____ hybrid orbital on O.
- b) The sigma bonds formed between the hydrogen and carbon is best described as being the overlap of an ____ hybrid orbital on each carbon with the ____ orbital on the hydrogen atoms.
- c) The pi bond formed between carbon and oxygen is the result of the overlap by of a _____ orbital on carbon and oxygen.
- d) The lone pairs on the oxygen atom are found on ____ hybrid orbitals

Question 5 6 Points	Classify each of the compounds as <u>soluble</u> (s) or <u>not soluble</u> (ns):
0 1 011113	a) Calcium iodide:
	b) Magnesium hydroxide:
	c) Barium fluoride:
Question 6 4 Points	Write a balanced chemical equation for the reaction that occurs when aqueous solutions of lead(II) iodide and iron(III) bromide are combined: =
Question 7 4 Points	Write a net ionic equation for the reaction that occurs when aqueous solutions of potassium hydroxide and nitrous acid (HNO ₂) are combined.
Question 8 4 Points	Write a net ionic equation for the reaction that occurs when an aqueous solution of hydriodic acid is added to solid barium sulfite . =
Question 9 7 Points	A 41.2g sample of copper at 99.8°C is dropped into a beaker containing 153g of water at 18.5°C. What is the final temperature when thermal equilibrium is reached? Assume the beaker neither absorbs nor loses heat. Heat Capacities: H ₂ O = 4.184 J/g°C
	°C

In an experiment, a 1.452g sample of L-ascorbic acid ($C_6H_8O_6$) is burned completely in a bomb calorimeter. The calorimeter is surrounded by 1319g of water. During the combustion the temperature increases from 24.21 to 27.15 $^{\circ}$ C.

Assuming that no energy is lost to the surroundings, calculate the molar heat of combustion of L-ascorbic acid based on these data.

Heat Capacities: $H_2O = 4.184 \text{ J/g}^{\circ}C$ Calorimeter = 784.2 J/°C

Molar Mass: $C_6H_8O_6 = 176.13 \text{ g.mol}^{-1}$

For full credit you must show work.

J.mol⁻¹

Question 11 6 Points

Given the standard enthalpy changes for the following two reactions:

(1)
$$N_2(g) + 2 O_2(g)$$

$$N_2(g) + 2 O_2(g)$$
 ----- 2 $NO_2(g)$ $\Delta H^{\circ} = 66.4 \text{ kJ}$

what is the standard enthalpy change for the reaction:

(3)
$$2N_2O(q) + 3 O_2(q) \rightarrow 4 NO_2(q)$$
 $\Delta H^\circ = ?$

For full credit you must show work.

Question 12 6 Points	Using standard heats of formation, given on the first page of this exam, calculate the standard enthalpy change for the following reaction. $H_2CO(g) + O_2(g) \longrightarrow CO_2(g) + H_2O(I)$ kJ
Question 13	How many milliliters of an aqueous solution of 0.204M magnesium iodide is needed to
6 Points	obtain 13.7 grams of the salt? For full credit you must show work. mL
Question 14 6 Points	For the following reaction, 0.126 moles of propane (C_3H_8) are mixed with 0.222 moles of oxygen gas. propane(g) (C_3H_8) + oxygen(g) — carbon dioxide(g) + water(g) What is the maximum amount of carbon dioxide that can be produced? For full credit you must show work and give balanced chemical equation(s).
	mol

Question 15 7 Points	For the following reaction, 3.43 grams of oxygen gas are mixed with excess butane (C_4H_{10}). The reaction yields 1.97 grams of carbon dioxide.
	butane(g) (C_4H_{10}) + oxygen(g) \longrightarrow carbon dioxide(g) + water(g)
	What is the percent yield of carbon dioxide? For full credit you must show work and give balanced chemical equation(s).
	%
Question 16 7 Points	What volume in mL of a 0.178M hydrochloric acid solution is required to neutralize 24.7 mL of a 0.158M calcium hydroxide solution?
	For full credit you must show work and give balanced chemical equation(s).
	mL

Do N	Not Write Below This
Exam III Score	